Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206394080> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3206394080 endingPage "32" @default.
- W3206394080 startingPage "20" @default.
- W3206394080 abstract "The paper presents a method for the detection of anomalies in waste-free production audit data based on the neural network model of Gauss-Bernoulli of the forward only restricted Cauchy machine (FORCM). The purpose of the work is to increase the efficiency of audit data analysis of waste-free production on the basis of the neural network model of anomalies detection without the use of the marked data that simplifies audit.
 To achieve this goal, the following tasks have been set and solved: offered model of generalized multiple transformations of audit data in the form of a two-layer neural network. Cauchy offered neural network model of Gauss-Bernoulli of the forward only restricted Cauchy machine possesses a heteroassociative memory; works real data; has no restrictions for storage capacity; provide high accuracy of detection of anomalies; uses Cauchy's distribution that increases the speed of convergence of a method of parametrical identification. To increase the speed of Gauss-Bernoulli parametric identification of a forward only restricted Cauchy machine, a parametric identification algorithm was developed to be implemented on a GPU using CUDA technology. The offered algorithm allows increasing training speed by approximately proportional to the product of numbers of neurons in the hidden layer and power of a training set.
 The experiments confirmed the operability of the developed software and allow to recommend it for use in practice in a subsystem of the automated analysis of DSS of audit for detection of anomalies." @default.
- W3206394080 created "2021-10-25" @default.
- W3206394080 creator A5006124261 @default.
- W3206394080 creator A5028980970 @default.
- W3206394080 creator A5040535581 @default.
- W3206394080 creator A5080763532 @default.
- W3206394080 creator A5088469047 @default.
- W3206394080 date "2021-10-04" @default.
- W3206394080 modified "2023-10-14" @default.
- W3206394080 title "METHOD OF NEURAL NETWORK DETECTION OF ANOMALIES IN DATA OF WASTE-FREE PRODUCTION AUDIT" @default.
- W3206394080 doi "https://doi.org/10.31891/csit-2021-4-3" @default.
- W3206394080 hasPublicationYear "2021" @default.
- W3206394080 type Work @default.
- W3206394080 sameAs 3206394080 @default.
- W3206394080 citedByCount "0" @default.
- W3206394080 crossrefType "journal-article" @default.
- W3206394080 hasAuthorship W3206394080A5006124261 @default.
- W3206394080 hasAuthorship W3206394080A5028980970 @default.
- W3206394080 hasAuthorship W3206394080A5040535581 @default.
- W3206394080 hasAuthorship W3206394080A5080763532 @default.
- W3206394080 hasAuthorship W3206394080A5088469047 @default.
- W3206394080 hasBestOaLocation W32063940801 @default.
- W3206394080 hasConcept C105795698 @default.
- W3206394080 hasConcept C11413529 @default.
- W3206394080 hasConcept C116834253 @default.
- W3206394080 hasConcept C117251300 @default.
- W3206394080 hasConcept C124101348 @default.
- W3206394080 hasConcept C127413603 @default.
- W3206394080 hasConcept C146978453 @default.
- W3206394080 hasConcept C152361515 @default.
- W3206394080 hasConcept C154945302 @default.
- W3206394080 hasConcept C33923547 @default.
- W3206394080 hasConcept C41008148 @default.
- W3206394080 hasConcept C49344536 @default.
- W3206394080 hasConcept C50644808 @default.
- W3206394080 hasConcept C59822182 @default.
- W3206394080 hasConcept C86803240 @default.
- W3206394080 hasConceptScore W3206394080C105795698 @default.
- W3206394080 hasConceptScore W3206394080C11413529 @default.
- W3206394080 hasConceptScore W3206394080C116834253 @default.
- W3206394080 hasConceptScore W3206394080C117251300 @default.
- W3206394080 hasConceptScore W3206394080C124101348 @default.
- W3206394080 hasConceptScore W3206394080C127413603 @default.
- W3206394080 hasConceptScore W3206394080C146978453 @default.
- W3206394080 hasConceptScore W3206394080C152361515 @default.
- W3206394080 hasConceptScore W3206394080C154945302 @default.
- W3206394080 hasConceptScore W3206394080C33923547 @default.
- W3206394080 hasConceptScore W3206394080C41008148 @default.
- W3206394080 hasConceptScore W3206394080C49344536 @default.
- W3206394080 hasConceptScore W3206394080C50644808 @default.
- W3206394080 hasConceptScore W3206394080C59822182 @default.
- W3206394080 hasConceptScore W3206394080C86803240 @default.
- W3206394080 hasIssue "2" @default.
- W3206394080 hasLocation W32063940801 @default.
- W3206394080 hasOpenAccess W3206394080 @default.
- W3206394080 hasPrimaryLocation W32063940801 @default.
- W3206394080 hasRelatedWork W10639499 @default.
- W3206394080 hasRelatedWork W11591864 @default.
- W3206394080 hasRelatedWork W13292222 @default.
- W3206394080 hasRelatedWork W13949745 @default.
- W3206394080 hasRelatedWork W4342771 @default.
- W3206394080 hasRelatedWork W5536689 @default.
- W3206394080 hasRelatedWork W6857472 @default.
- W3206394080 hasRelatedWork W790158 @default.
- W3206394080 hasRelatedWork W9605419 @default.
- W3206394080 hasRelatedWork W9921259 @default.
- W3206394080 isParatext "false" @default.
- W3206394080 isRetracted "false" @default.
- W3206394080 magId "3206394080" @default.
- W3206394080 workType "article" @default.