Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206402020> ?p ?o ?g. }
- W3206402020 endingPage "25972" @default.
- W3206402020 startingPage "25963" @default.
- W3206402020 abstract "Due to the limited spatial resolution of hyperspectral sensors, each pixel in hyperspectral image often consists of several components, called endmembers. Hyperspectral unmixing aims at extracting these endmembers and corresponding fractional abundances from the hyperspectral image (HSI) data. With the availability of spectral libraries, semi-supervised unmixing which estimates the abundance from given endmember matrix, have become more and more popular. General semi-supervised methods take advantage of the sparsity constraint on the abundance matrix and consider the pixels as independent trials. However, the spatial information for example the correlation between pixels often cannot be taken into consideration. In this paper, we derive a semi-supervised hyperspectral image unmixing algorithm which handles both spectral and spatial prior efficiently using matrix factorization. The abundance matrix is recast as a multiplication of two variables, in which the spectral and spatial priors are captured respectively. Numerical tests in both simulated and real datasets show that compared to state-of-the-art unmixing algorithms, the proposed spectral-spatial factorization method has lower computation cost, better unmixing results, and is more robust to regularization parameter selection." @default.
- W3206402020 created "2021-10-25" @default.
- W3206402020 creator A5002320979 @default.
- W3206402020 creator A5016168070 @default.
- W3206402020 creator A5034746334 @default.
- W3206402020 creator A5080781300 @default.
- W3206402020 date "2021-11-15" @default.
- W3206402020 modified "2023-10-03" @default.
- W3206402020 title "Semi-Supervised Unmixing of Hyperspectral Data via Spectral-Spatial Factorization" @default.
- W3206402020 cites W1489405158 @default.
- W3206402020 cites W1935182534 @default.
- W3206402020 cites W1937669826 @default.
- W3206402020 cites W1964570608 @default.
- W3206402020 cites W1965888395 @default.
- W3206402020 cites W1988868707 @default.
- W3206402020 cites W2010797000 @default.
- W3206402020 cites W2012749606 @default.
- W3206402020 cites W2048056733 @default.
- W3206402020 cites W2057370874 @default.
- W3206402020 cites W2059976262 @default.
- W3206402020 cites W2063790512 @default.
- W3206402020 cites W2078204800 @default.
- W3206402020 cites W2089298795 @default.
- W3206402020 cites W2095906131 @default.
- W3206402020 cites W2099321050 @default.
- W3206402020 cites W2114486983 @default.
- W3206402020 cites W2125298866 @default.
- W3206402020 cites W2125678373 @default.
- W3206402020 cites W2126527280 @default.
- W3206402020 cites W2133665775 @default.
- W3206402020 cites W2140501674 @default.
- W3206402020 cites W2142786738 @default.
- W3206402020 cites W2145554279 @default.
- W3206402020 cites W2157321686 @default.
- W3206402020 cites W2163886442 @default.
- W3206402020 cites W2169466597 @default.
- W3206402020 cites W2323672905 @default.
- W3206402020 cites W2340706123 @default.
- W3206402020 cites W2617737158 @default.
- W3206402020 cites W2767898978 @default.
- W3206402020 cites W2782517596 @default.
- W3206402020 cites W2789612570 @default.
- W3206402020 cites W2792167075 @default.
- W3206402020 cites W2794145027 @default.
- W3206402020 cites W2886042776 @default.
- W3206402020 cites W2893348249 @default.
- W3206402020 cites W2894115892 @default.
- W3206402020 cites W2898165830 @default.
- W3206402020 cites W2963371848 @default.
- W3206402020 cites W2981863867 @default.
- W3206402020 cites W3002098459 @default.
- W3206402020 cites W3015126059 @default.
- W3206402020 cites W3080537031 @default.
- W3206402020 cites W4292363360 @default.
- W3206402020 doi "https://doi.org/10.1109/jsen.2021.3118885" @default.
- W3206402020 hasPublicationYear "2021" @default.
- W3206402020 type Work @default.
- W3206402020 sameAs 3206402020 @default.
- W3206402020 citedByCount "3" @default.
- W3206402020 countsByYear W32064020202022 @default.
- W3206402020 countsByYear W32064020202023 @default.
- W3206402020 crossrefType "journal-article" @default.
- W3206402020 hasAuthorship W3206402020A5002320979 @default.
- W3206402020 hasAuthorship W3206402020A5016168070 @default.
- W3206402020 hasAuthorship W3206402020A5034746334 @default.
- W3206402020 hasAuthorship W3206402020A5080781300 @default.
- W3206402020 hasConcept C105795698 @default.
- W3206402020 hasConcept C107673813 @default.
- W3206402020 hasConcept C121332964 @default.
- W3206402020 hasConcept C152671427 @default.
- W3206402020 hasConcept C153180895 @default.
- W3206402020 hasConcept C154945302 @default.
- W3206402020 hasConcept C158693339 @default.
- W3206402020 hasConcept C159078339 @default.
- W3206402020 hasConcept C159620131 @default.
- W3206402020 hasConcept C160633673 @default.
- W3206402020 hasConcept C176641082 @default.
- W3206402020 hasConcept C177769412 @default.
- W3206402020 hasConcept C205372480 @default.
- W3206402020 hasConcept C205649164 @default.
- W3206402020 hasConcept C2776135515 @default.
- W3206402020 hasConcept C2778514742 @default.
- W3206402020 hasConcept C33923547 @default.
- W3206402020 hasConcept C41008148 @default.
- W3206402020 hasConcept C42355184 @default.
- W3206402020 hasConcept C505870484 @default.
- W3206402020 hasConcept C58237817 @default.
- W3206402020 hasConcept C62520636 @default.
- W3206402020 hasConcept C62649853 @default.
- W3206402020 hasConcept C77077793 @default.
- W3206402020 hasConcept C78660771 @default.
- W3206402020 hasConcept C86803240 @default.
- W3206402020 hasConceptScore W3206402020C105795698 @default.
- W3206402020 hasConceptScore W3206402020C107673813 @default.
- W3206402020 hasConceptScore W3206402020C121332964 @default.
- W3206402020 hasConceptScore W3206402020C152671427 @default.
- W3206402020 hasConceptScore W3206402020C153180895 @default.
- W3206402020 hasConceptScore W3206402020C154945302 @default.