Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206406854> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3206406854 endingPage "30" @default.
- W3206406854 startingPage "28" @default.
- W3206406854 abstract "Today, Convolutional Neural Networks (CNN) provide one of the best performances in state of the art image recognition, while requiring high computational power and being very time consuming. So it raises the following questions: can deep learning achieve better performances than machine learning over different computer vision aspect, such as development time, processing time, raw performances or resource consumption? Considering strong constraints on this listing, can we still consider Machine Learning for a specific computer vision application? Hence, the purpose of this paper is to provide an insight into these questions by comparing methods from both Deep Learning and traditional Machine Learning, applied on a real-time person authentication application, using 2D faces under a binary classification problem. These methods are embedded in a restricted power computational unit, forming a smart camera composing a low-cost security system. This application needs the biometric model to be minimized so it can be stored on a remote personal media (10 KB)." @default.
- W3206406854 created "2021-10-25" @default.
- W3206406854 creator A5022771330 @default.
- W3206406854 creator A5024609220 @default.
- W3206406854 creator A5048042942 @default.
- W3206406854 creator A5081302549 @default.
- W3206406854 date "2019-01-01" @default.
- W3206406854 modified "2023-09-22" @default.
- W3206406854 title "Traditional Machine Learning or Deep Learning Methods for Embedded Computer Vision Study on Biometric Application" @default.
- W3206406854 hasPublicationYear "2019" @default.
- W3206406854 type Work @default.
- W3206406854 sameAs 3206406854 @default.
- W3206406854 citedByCount "0" @default.
- W3206406854 crossrefType "posted-content" @default.
- W3206406854 hasAuthorship W3206406854A5022771330 @default.
- W3206406854 hasAuthorship W3206406854A5024609220 @default.
- W3206406854 hasAuthorship W3206406854A5048042942 @default.
- W3206406854 hasAuthorship W3206406854A5081302549 @default.
- W3206406854 hasConcept C108583219 @default.
- W3206406854 hasConcept C119857082 @default.
- W3206406854 hasConcept C148417208 @default.
- W3206406854 hasConcept C154945302 @default.
- W3206406854 hasConcept C184297639 @default.
- W3206406854 hasConcept C38652104 @default.
- W3206406854 hasConcept C41008148 @default.
- W3206406854 hasConcept C81363708 @default.
- W3206406854 hasConceptScore W3206406854C108583219 @default.
- W3206406854 hasConceptScore W3206406854C119857082 @default.
- W3206406854 hasConceptScore W3206406854C148417208 @default.
- W3206406854 hasConceptScore W3206406854C154945302 @default.
- W3206406854 hasConceptScore W3206406854C184297639 @default.
- W3206406854 hasConceptScore W3206406854C38652104 @default.
- W3206406854 hasConceptScore W3206406854C41008148 @default.
- W3206406854 hasConceptScore W3206406854C81363708 @default.
- W3206406854 hasIssue "1" @default.
- W3206406854 hasLocation W32064068541 @default.
- W3206406854 hasOpenAccess W3206406854 @default.
- W3206406854 hasPrimaryLocation W32064068541 @default.
- W3206406854 hasRelatedWork W1499649359 @default.
- W3206406854 hasRelatedWork W1509027578 @default.
- W3206406854 hasRelatedWork W2043192501 @default.
- W3206406854 hasRelatedWork W2109026495 @default.
- W3206406854 hasRelatedWork W2132918094 @default.
- W3206406854 hasRelatedWork W2155056460 @default.
- W3206406854 hasRelatedWork W2156386183 @default.
- W3206406854 hasRelatedWork W2159577413 @default.
- W3206406854 hasRelatedWork W2248927208 @default.
- W3206406854 hasRelatedWork W2264845439 @default.
- W3206406854 hasRelatedWork W2293369073 @default.
- W3206406854 hasRelatedWork W2359219405 @default.
- W3206406854 hasRelatedWork W2369758070 @default.
- W3206406854 hasRelatedWork W2545977135 @default.
- W3206406854 hasRelatedWork W2616635204 @default.
- W3206406854 hasRelatedWork W2896900535 @default.
- W3206406854 hasRelatedWork W2901480464 @default.
- W3206406854 hasRelatedWork W3036467559 @default.
- W3206406854 hasRelatedWork W3120552317 @default.
- W3206406854 hasRelatedWork W88822072 @default.
- W3206406854 hasVolume "9" @default.
- W3206406854 isParatext "false" @default.
- W3206406854 isRetracted "false" @default.
- W3206406854 magId "3206406854" @default.
- W3206406854 workType "article" @default.