Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206409898> ?p ?o ?g. }
- W3206409898 endingPage "118" @default.
- W3206409898 startingPage "101" @default.
- W3206409898 abstract "Early and automatic segmentation of lung infections from computed tomography images of COVID-19 patients is crucial for timely quarantine and effective treatment. However, automating the segmentation of lung infection from CT slices is challenging due to a lack of contrast between the normal and infected tissues. A CNN and GAN-based framework are presented to classify and then segment the lung infections automatically from COVID-19 lung CT slices. In this work, the authors propose a novel method named P2P-COVID-SEG to automatically classify COVID-19 and normal CT images and then segment COVID-19 lung infections from CT images using GAN. The proposed model outperformed the existing classification models with an accuracy of 98.10%. The segmentation results outperformed existing methods and achieved infection segmentation with accurate boundaries. The Dice coefficient achieved using GAN segmentation is 81.11%. The segmentation results demonstrate that the proposed model outperforms the existing models and achieves state-of-the-art performance." @default.
- W3206409898 created "2021-10-25" @default.
- W3206409898 creator A5002855381 @default.
- W3206409898 creator A5045655663 @default.
- W3206409898 creator A5063218869 @default.
- W3206409898 date "2021-10-01" @default.
- W3206409898 modified "2023-09-23" @default.
- W3206409898 title "P2P-COVID-GAN" @default.
- W3206409898 cites W1812394418 @default.
- W3206409898 cites W2743008510 @default.
- W3206409898 cites W2793954249 @default.
- W3206409898 cites W2888358068 @default.
- W3206409898 cites W2933170392 @default.
- W3206409898 cites W2964227007 @default.
- W3206409898 cites W3001465255 @default.
- W3206409898 cites W3003901880 @default.
- W3206409898 cites W3006082171 @default.
- W3206409898 cites W3006367816 @default.
- W3206409898 cites W3010659930 @default.
- W3206409898 cites W3011149445 @default.
- W3206409898 cites W3013601031 @default.
- W3206409898 cites W3013633552 @default.
- W3206409898 cites W3017403618 @default.
- W3206409898 cites W3021622280 @default.
- W3206409898 cites W3025311784 @default.
- W3206409898 cites W3025529660 @default.
- W3206409898 cites W3025576489 @default.
- W3206409898 cites W3027763298 @default.
- W3206409898 cites W3028070348 @default.
- W3206409898 cites W3033272814 @default.
- W3206409898 cites W3038744550 @default.
- W3206409898 cites W3040660552 @default.
- W3206409898 cites W3044704315 @default.
- W3206409898 cites W3080568059 @default.
- W3206409898 cites W3086651087 @default.
- W3206409898 cites W3092560581 @default.
- W3206409898 cites W3095044166 @default.
- W3206409898 cites W3109359251 @default.
- W3206409898 cites W3114958142 @default.
- W3206409898 cites W3119322032 @default.
- W3206409898 cites W3127303127 @default.
- W3206409898 cites W3129581972 @default.
- W3206409898 cites W3133068061 @default.
- W3206409898 doi "https://doi.org/10.4018/ijdwm.2021100105" @default.
- W3206409898 hasPublicationYear "2021" @default.
- W3206409898 type Work @default.
- W3206409898 sameAs 3206409898 @default.
- W3206409898 citedByCount "8" @default.
- W3206409898 countsByYear W32064098982021 @default.
- W3206409898 countsByYear W32064098982022 @default.
- W3206409898 countsByYear W32064098982023 @default.
- W3206409898 crossrefType "journal-article" @default.
- W3206409898 hasAuthorship W3206409898A5002855381 @default.
- W3206409898 hasAuthorship W3206409898A5045655663 @default.
- W3206409898 hasAuthorship W3206409898A5063218869 @default.
- W3206409898 hasConcept C119599485 @default.
- W3206409898 hasConcept C124504099 @default.
- W3206409898 hasConcept C127413603 @default.
- W3206409898 hasConcept C141353440 @default.
- W3206409898 hasConcept C142724271 @default.
- W3206409898 hasConcept C153180895 @default.
- W3206409898 hasConcept C154945302 @default.
- W3206409898 hasConcept C163892561 @default.
- W3206409898 hasConcept C2779134260 @default.
- W3206409898 hasConcept C3008058167 @default.
- W3206409898 hasConcept C31972630 @default.
- W3206409898 hasConcept C41008148 @default.
- W3206409898 hasConcept C524204448 @default.
- W3206409898 hasConcept C71924100 @default.
- W3206409898 hasConcept C89600930 @default.
- W3206409898 hasConceptScore W3206409898C119599485 @default.
- W3206409898 hasConceptScore W3206409898C124504099 @default.
- W3206409898 hasConceptScore W3206409898C127413603 @default.
- W3206409898 hasConceptScore W3206409898C141353440 @default.
- W3206409898 hasConceptScore W3206409898C142724271 @default.
- W3206409898 hasConceptScore W3206409898C153180895 @default.
- W3206409898 hasConceptScore W3206409898C154945302 @default.
- W3206409898 hasConceptScore W3206409898C163892561 @default.
- W3206409898 hasConceptScore W3206409898C2779134260 @default.
- W3206409898 hasConceptScore W3206409898C3008058167 @default.
- W3206409898 hasConceptScore W3206409898C31972630 @default.
- W3206409898 hasConceptScore W3206409898C41008148 @default.
- W3206409898 hasConceptScore W3206409898C524204448 @default.
- W3206409898 hasConceptScore W3206409898C71924100 @default.
- W3206409898 hasConceptScore W3206409898C89600930 @default.
- W3206409898 hasIssue "4" @default.
- W3206409898 hasLocation W32064098981 @default.
- W3206409898 hasOpenAccess W3206409898 @default.
- W3206409898 hasPrimaryLocation W32064098981 @default.
- W3206409898 hasRelatedWork W1507266234 @default.
- W3206409898 hasRelatedWork W1669643531 @default.
- W3206409898 hasRelatedWork W1721780360 @default.
- W3206409898 hasRelatedWork W2110230079 @default.
- W3206409898 hasRelatedWork W2117664411 @default.
- W3206409898 hasRelatedWork W2117933325 @default.
- W3206409898 hasRelatedWork W2122581818 @default.
- W3206409898 hasRelatedWork W2159066190 @default.
- W3206409898 hasRelatedWork W2739874619 @default.