Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206449504> ?p ?o ?g. }
- W3206449504 endingPage "132893" @default.
- W3206449504 startingPage "132893" @default.
- W3206449504 abstract "Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy has been widely applied to detect the fluorescent components in samples from natural water bodies to wastewater treatment processes. Data interpretation methods such as parallel factor analysis (PARAFAC) are required to decompose the overlapped fluorescent signals in the 3D-EEM spectra. However, strict requirements of data and complicated procedures of the PARAFAC limit the online monitoring and analysis of samples. Here we develop a fast fluorescent identification network (FFI-Net) model based on the deep learning approach to fast predict the numbers and maps of fluorescent components by simply inputting a single 3D-EEM spectrum. Two types of convolutional neural networks (CNN) are trained to classify the numbers of fluorescent components with an accuracy of 0.956 and predict the maps of fluorescent components with the min mean absolute error of 8.9 × 10-4. We demonstrate that the accuracy of the FFI-Net model will be further improved when more 3D-EEM data are available as a training dataset. Meanwhile, a user-friendly interface is designed to facilitate practical applications. Our approach gives a robust way to overcome the shortage of the PARAFAC and provides a new platform for online analysis of the fluorescent components in water samples." @default.
- W3206449504 created "2021-10-25" @default.
- W3206449504 creator A5007812696 @default.
- W3206449504 creator A5015077592 @default.
- W3206449504 creator A5041113248 @default.
- W3206449504 creator A5043490198 @default.
- W3206449504 creator A5050018458 @default.
- W3206449504 creator A5056640675 @default.
- W3206449504 creator A5067605561 @default.
- W3206449504 date "2022-02-01" @default.
- W3206449504 modified "2023-10-16" @default.
- W3206449504 title "Fast identification of fluorescent components in three-dimensional excitation-emission matrix fluorescence spectra via deep learning" @default.
- W3206449504 cites W1599627005 @default.
- W3206449504 cites W1689711448 @default.
- W3206449504 cites W1782270454 @default.
- W3206449504 cites W1975116267 @default.
- W3206449504 cites W2002737909 @default.
- W3206449504 cites W2032162628 @default.
- W3206449504 cites W2035245606 @default.
- W3206449504 cites W2042533040 @default.
- W3206449504 cites W2049056483 @default.
- W3206449504 cites W2070654246 @default.
- W3206449504 cites W2071892382 @default.
- W3206449504 cites W2076063813 @default.
- W3206449504 cites W2083219154 @default.
- W3206449504 cites W2157382843 @default.
- W3206449504 cites W2203984701 @default.
- W3206449504 cites W2296294370 @default.
- W3206449504 cites W2330461009 @default.
- W3206449504 cites W2344030229 @default.
- W3206449504 cites W2464102127 @default.
- W3206449504 cites W2480010979 @default.
- W3206449504 cites W2568239670 @default.
- W3206449504 cites W2592566791 @default.
- W3206449504 cites W2758987822 @default.
- W3206449504 cites W2790034089 @default.
- W3206449504 cites W2799669941 @default.
- W3206449504 cites W2900148868 @default.
- W3206449504 cites W2903400097 @default.
- W3206449504 cites W2915033409 @default.
- W3206449504 cites W2921654899 @default.
- W3206449504 cites W2946545660 @default.
- W3206449504 cites W2949459693 @default.
- W3206449504 cites W2957085577 @default.
- W3206449504 cites W2957995180 @default.
- W3206449504 cites W2965471437 @default.
- W3206449504 cites W2970323039 @default.
- W3206449504 cites W2980586823 @default.
- W3206449504 cites W2985938182 @default.
- W3206449504 cites W2991363861 @default.
- W3206449504 cites W3000263665 @default.
- W3206449504 cites W3005822506 @default.
- W3206449504 cites W3006348854 @default.
- W3206449504 cites W3006485345 @default.
- W3206449504 cites W3007314814 @default.
- W3206449504 cites W3008886178 @default.
- W3206449504 cites W3013457107 @default.
- W3206449504 cites W3014841035 @default.
- W3206449504 cites W3015122198 @default.
- W3206449504 cites W3025593963 @default.
- W3206449504 cites W3029652114 @default.
- W3206449504 cites W3033071817 @default.
- W3206449504 cites W3039563863 @default.
- W3206449504 cites W3040734937 @default.
- W3206449504 cites W3048037556 @default.
- W3206449504 cites W3048549109 @default.
- W3206449504 cites W3066539718 @default.
- W3206449504 cites W3095419232 @default.
- W3206449504 cites W3104123947 @default.
- W3206449504 cites W3126867958 @default.
- W3206449504 cites W3127988656 @default.
- W3206449504 cites W3180562507 @default.
- W3206449504 doi "https://doi.org/10.1016/j.cej.2021.132893" @default.
- W3206449504 hasPublicationYear "2022" @default.
- W3206449504 type Work @default.
- W3206449504 sameAs 3206449504 @default.
- W3206449504 citedByCount "26" @default.
- W3206449504 countsByYear W32064495042022 @default.
- W3206449504 countsByYear W32064495042023 @default.
- W3206449504 crossrefType "journal-article" @default.
- W3206449504 hasAuthorship W3206449504A5007812696 @default.
- W3206449504 hasAuthorship W3206449504A5015077592 @default.
- W3206449504 hasAuthorship W3206449504A5041113248 @default.
- W3206449504 hasAuthorship W3206449504A5043490198 @default.
- W3206449504 hasAuthorship W3206449504A5050018458 @default.
- W3206449504 hasAuthorship W3206449504A5056640675 @default.
- W3206449504 hasAuthorship W3206449504A5067605561 @default.
- W3206449504 hasConcept C106487976 @default.
- W3206449504 hasConcept C11413529 @default.
- W3206449504 hasConcept C116834253 @default.
- W3206449504 hasConcept C120665830 @default.
- W3206449504 hasConcept C121332964 @default.
- W3206449504 hasConcept C153180895 @default.
- W3206449504 hasConcept C154945302 @default.
- W3206449504 hasConcept C185592680 @default.
- W3206449504 hasConcept C186060115 @default.
- W3206449504 hasConcept C41008148 @default.
- W3206449504 hasConcept C43617362 @default.