Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206457652> ?p ?o ?g. }
- W3206457652 endingPage "111386" @default.
- W3206457652 startingPage "111386" @default.
- W3206457652 abstract "Active learning (AL) can drastically accelerate materials discovery; its power has been shown in various classes of materials and target properties. Prior efforts have used machine learning models for the optimal selection of physical experiments or physics-based simulations. However, the latter efforts have been mostly limited to the use of electronic structure calculations and properties that can be obtained at the unit cell level and with negligible noise. We couple AL with molecular dynamics simulations to identify multiple principal component alloys (MPCAs) with high melting temperatures. Building on cloud computing services through nanoHUB, we present a fully autonomous workflow for the efficient exploration of the high dimensional compositional space of MPCAs. We characterize how uncertainties arising from the stochastic nature of the simulations and the acquisition functions used to select simulations affect the convergence of the approach. Interestingly, we find that relatively short simulations with significant uncertainties can be used to efficiently find the desired alloys as the random forest models used for AL average out fluctuations." @default.
- W3206457652 created "2021-10-25" @default.
- W3206457652 creator A5023361158 @default.
- W3206457652 creator A5036381334 @default.
- W3206457652 creator A5039865328 @default.
- W3206457652 creator A5056214997 @default.
- W3206457652 creator A5083845456 @default.
- W3206457652 date "2022-06-01" @default.
- W3206457652 modified "2023-10-10" @default.
- W3206457652 title "Active learning and molecular dynamics simulations to find high melting temperature alloys" @default.
- W3206457652 cites W1510052597 @default.
- W3206457652 cites W1678620623 @default.
- W3206457652 cites W1967053212 @default.
- W3206457652 cites W1992985800 @default.
- W3206457652 cites W1999928247 @default.
- W3206457652 cites W2015197254 @default.
- W3206457652 cites W2016197031 @default.
- W3206457652 cites W2016288206 @default.
- W3206457652 cites W2025444507 @default.
- W3206457652 cites W2030783863 @default.
- W3206457652 cites W2043995525 @default.
- W3206457652 cites W2047968138 @default.
- W3206457652 cites W2072627535 @default.
- W3206457652 cites W2078011655 @default.
- W3206457652 cites W2078492700 @default.
- W3206457652 cites W2083415705 @default.
- W3206457652 cites W2089843324 @default.
- W3206457652 cites W2103109670 @default.
- W3206457652 cites W2107264164 @default.
- W3206457652 cites W2145438015 @default.
- W3206457652 cites W2147100449 @default.
- W3206457652 cites W2155155530 @default.
- W3206457652 cites W2299676960 @default.
- W3206457652 cites W2337110853 @default.
- W3206457652 cites W2437591545 @default.
- W3206457652 cites W2485765659 @default.
- W3206457652 cites W2558921396 @default.
- W3206457652 cites W26088913 @default.
- W3206457652 cites W2739066022 @default.
- W3206457652 cites W2754286478 @default.
- W3206457652 cites W2786232134 @default.
- W3206457652 cites W2788500979 @default.
- W3206457652 cites W2886812978 @default.
- W3206457652 cites W2890961624 @default.
- W3206457652 cites W2896041006 @default.
- W3206457652 cites W2902452488 @default.
- W3206457652 cites W2911501529 @default.
- W3206457652 cites W2911964244 @default.
- W3206457652 cites W2921408331 @default.
- W3206457652 cites W2942913009 @default.
- W3206457652 cites W2943076804 @default.
- W3206457652 cites W2951450280 @default.
- W3206457652 cites W2963863900 @default.
- W3206457652 cites W2967096001 @default.
- W3206457652 cites W2992115806 @default.
- W3206457652 cites W2996580859 @default.
- W3206457652 cites W3033667425 @default.
- W3206457652 cites W3067819707 @default.
- W3206457652 cites W3093661659 @default.
- W3206457652 cites W3098287119 @default.
- W3206457652 cites W3102476541 @default.
- W3206457652 cites W3103297471 @default.
- W3206457652 cites W3105839808 @default.
- W3206457652 cites W3107581532 @default.
- W3206457652 cites W3118519758 @default.
- W3206457652 cites W3125411724 @default.
- W3206457652 cites W3126529121 @default.
- W3206457652 cites W3188477177 @default.
- W3206457652 doi "https://doi.org/10.1016/j.commatsci.2022.111386" @default.
- W3206457652 hasPublicationYear "2022" @default.
- W3206457652 type Work @default.
- W3206457652 sameAs 3206457652 @default.
- W3206457652 citedByCount "5" @default.
- W3206457652 countsByYear W32064576522022 @default.
- W3206457652 countsByYear W32064576522023 @default.
- W3206457652 crossrefType "journal-article" @default.
- W3206457652 hasAuthorship W3206457652A5023361158 @default.
- W3206457652 hasAuthorship W3206457652A5036381334 @default.
- W3206457652 hasAuthorship W3206457652A5039865328 @default.
- W3206457652 hasAuthorship W3206457652A5056214997 @default.
- W3206457652 hasAuthorship W3206457652A5083845456 @default.
- W3206457652 hasBestOaLocation W32064576521 @default.
- W3206457652 hasConcept C121332964 @default.
- W3206457652 hasConcept C121864883 @default.
- W3206457652 hasConcept C154945302 @default.
- W3206457652 hasConcept C162324750 @default.
- W3206457652 hasConcept C169258074 @default.
- W3206457652 hasConcept C177212765 @default.
- W3206457652 hasConcept C2777303404 @default.
- W3206457652 hasConcept C41008148 @default.
- W3206457652 hasConcept C50522688 @default.
- W3206457652 hasConcept C59593255 @default.
- W3206457652 hasConcept C62520636 @default.
- W3206457652 hasConcept C77088390 @default.
- W3206457652 hasConceptScore W3206457652C121332964 @default.
- W3206457652 hasConceptScore W3206457652C121864883 @default.
- W3206457652 hasConceptScore W3206457652C154945302 @default.
- W3206457652 hasConceptScore W3206457652C162324750 @default.