Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206470611> ?p ?o ?g. }
- W3206470611 abstract "The aim of this work is to study the dosimetric effect from generated synthetic computed tomography (sCT) from magnetic resonance (MR) images using a deep learning algorithm for Gamma Knife (GK) stereotactic radiosurgery (SRS). The Monte Carlo (MC) method is used for dose calculations. Thirty patients were retrospectively selected with our institution IRB’s approval. All patients were treated with GK SRS based on T1-weighted MR images and also underwent conventional external beam treatment with a CT scan. Image datasets were preprocessed with registration and were normalized to obtain similar intensity for the pairs of MR and CT images. A deep convolutional neural network arranged in an encoder–decoder fashion was used to learn the direct mapping from MR to the corresponding CT. A number of metrics including the voxel-wise mean error (ME) and mean absolute error (MAE) were used for evaluating the difference between generated sCT and the true CT. To study the dosimetric accuracy, MC simulations were performed based on the true CT and sCT using the same treatment parameters. The method produced an MAE of 86.6 ± 34.1 Hundsfield units (HU) and a mean squared error (MSE) of 160.9 ± 32.8. The mean Dice similarity coefficient was 0.82 ± 0.05 for HU > 200. The difference for dose-volume parameter D95 between the ground true dose and the dose calculated with sCT was 1.1% if a synthetic CT-to-density table was used, and 4.9% compared with the calculations based on the water-brain phantom." @default.
- W3206470611 created "2021-10-25" @default.
- W3206470611 creator A5010581654 @default.
- W3206470611 creator A5030876153 @default.
- W3206470611 creator A5060092069 @default.
- W3206470611 creator A5060689059 @default.
- W3206470611 creator A5068844152 @default.
- W3206470611 creator A5082327734 @default.
- W3206470611 creator A5089511408 @default.
- W3206470611 creator A5091243183 @default.
- W3206470611 date "2021-01-01" @default.
- W3206470611 modified "2023-09-29" @default.
- W3206470611 title "Monte Carlo Dose Calculation Using MRI Based Synthetic CT Generated by Fully Convolutional Neural Network for Gamma Knife Radiosurgery" @default.
- W3206470611 cites W1554403614 @default.
- W3206470611 cites W1566703341 @default.
- W3206470611 cites W1967121735 @default.
- W3206470611 cites W1969750491 @default.
- W3206470611 cites W1980941739 @default.
- W3206470611 cites W1989172559 @default.
- W3206470611 cites W2000365144 @default.
- W3206470611 cites W2021177063 @default.
- W3206470611 cites W2030642117 @default.
- W3206470611 cites W2044967973 @default.
- W3206470611 cites W2050297026 @default.
- W3206470611 cites W2053822576 @default.
- W3206470611 cites W2080858163 @default.
- W3206470611 cites W2094054777 @default.
- W3206470611 cites W2166485554 @default.
- W3206470611 cites W2171644025 @default.
- W3206470611 cites W2180159683 @default.
- W3206470611 cites W2208340121 @default.
- W3206470611 cites W2471151236 @default.
- W3206470611 cites W2523468284 @default.
- W3206470611 cites W2567079332 @default.
- W3206470611 cites W2576566051 @default.
- W3206470611 cites W2622677740 @default.
- W3206470611 cites W2630100750 @default.
- W3206470611 cites W2808312419 @default.
- W3206470611 cites W2935787471 @default.
- W3206470611 cites W2939413164 @default.
- W3206470611 cites W2963176524 @default.
- W3206470611 cites W2982830827 @default.
- W3206470611 cites W2989765925 @default.
- W3206470611 cites W2996566216 @default.
- W3206470611 cites W3101123465 @default.
- W3206470611 doi "https://doi.org/10.1177/15330338211046433" @default.
- W3206470611 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8504229" @default.
- W3206470611 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34632872" @default.
- W3206470611 hasPublicationYear "2021" @default.
- W3206470611 type Work @default.
- W3206470611 sameAs 3206470611 @default.
- W3206470611 citedByCount "2" @default.
- W3206470611 countsByYear W32064706112023 @default.
- W3206470611 crossrefType "journal-article" @default.
- W3206470611 hasAuthorship W3206470611A5010581654 @default.
- W3206470611 hasAuthorship W3206470611A5030876153 @default.
- W3206470611 hasAuthorship W3206470611A5060092069 @default.
- W3206470611 hasAuthorship W3206470611A5060689059 @default.
- W3206470611 hasAuthorship W3206470611A5068844152 @default.
- W3206470611 hasAuthorship W3206470611A5082327734 @default.
- W3206470611 hasAuthorship W3206470611A5089511408 @default.
- W3206470611 hasAuthorship W3206470611A5091243183 @default.
- W3206470611 hasBestOaLocation W32064706111 @default.
- W3206470611 hasConcept C104293457 @default.
- W3206470611 hasConcept C105795698 @default.
- W3206470611 hasConcept C11413529 @default.
- W3206470611 hasConcept C126838900 @default.
- W3206470611 hasConcept C139945424 @default.
- W3206470611 hasConcept C154945302 @default.
- W3206470611 hasConcept C19499675 @default.
- W3206470611 hasConcept C2780387249 @default.
- W3206470611 hasConcept C2989005 @default.
- W3206470611 hasConcept C33923547 @default.
- W3206470611 hasConcept C41008148 @default.
- W3206470611 hasConcept C509974204 @default.
- W3206470611 hasConcept C54170458 @default.
- W3206470611 hasConcept C71924100 @default.
- W3206470611 hasConcept C81363708 @default.
- W3206470611 hasConceptScore W3206470611C104293457 @default.
- W3206470611 hasConceptScore W3206470611C105795698 @default.
- W3206470611 hasConceptScore W3206470611C11413529 @default.
- W3206470611 hasConceptScore W3206470611C126838900 @default.
- W3206470611 hasConceptScore W3206470611C139945424 @default.
- W3206470611 hasConceptScore W3206470611C154945302 @default.
- W3206470611 hasConceptScore W3206470611C19499675 @default.
- W3206470611 hasConceptScore W3206470611C2780387249 @default.
- W3206470611 hasConceptScore W3206470611C2989005 @default.
- W3206470611 hasConceptScore W3206470611C33923547 @default.
- W3206470611 hasConceptScore W3206470611C41008148 @default.
- W3206470611 hasConceptScore W3206470611C509974204 @default.
- W3206470611 hasConceptScore W3206470611C54170458 @default.
- W3206470611 hasConceptScore W3206470611C71924100 @default.
- W3206470611 hasConceptScore W3206470611C81363708 @default.
- W3206470611 hasLocation W32064706111 @default.
- W3206470611 hasLocation W32064706112 @default.
- W3206470611 hasLocation W32064706113 @default.
- W3206470611 hasLocation W32064706114 @default.
- W3206470611 hasOpenAccess W3206470611 @default.
- W3206470611 hasPrimaryLocation W32064706111 @default.
- W3206470611 hasRelatedWork W2333824 @default.