Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206483178> ?p ?o ?g. }
- W3206483178 abstract "Objective clinical tools, including cognitive-motor integration (CMI) tasks, have the potential to improve concussion rehabilitation by helping to determine whether or not a concussion has occurred. In order to be useful, however, an individual must put forth their best effort. In this study, we have proposed a novel method to detect the difference in cortical activity between best effort (no-sabotage) and willful under-performance (sabotage) using a deep learning (DL) approach on the electroencephalogram (EEG) signals. The EEG signals from a wearable four-channel headband were acquired during a CMI task. Each participant completed sabotage and no-sabotage conditions in random order. A multi-channel convolutional neural network with long short term memory (CNN-LSTM) model with self-attention has been used to perform the time-series classification into sabotage and no-sabotage, by transforming the time-series into two-dimensional (2D) image-based scalogram representations. This approach allows the inspection of frequency-based, and temporal features of EEG, and the use of a multi-channel model facilitates in capturing correlation and causality between different EEG channels. By treating the 2D scalogram as an image, we show that the trained CNN-LSTM classifier based on automated visual analysis can achieve high levels of discrimination and an overall accuracy of 98.71% in case of intra-subject classification, as well as low false-positive rates. The average intra-subject accuracy obtained was 92.8%, and the average inter-subject accuracy was 86.15%. These results indicate that our proposed model performed well on the data of all subjects. We also compare the scalogram-based results with the results that we obtained by using raw time-series, showing that scalogram-based gave better performance. Our method can be applied in clinical applications such as baseline testing, assessing the current state of injury and recovery tracking and industrial applications like monitoring performance deterioration in workplaces." @default.
- W3206483178 created "2021-10-25" @default.
- W3206483178 creator A5008850404 @default.
- W3206483178 creator A5012463337 @default.
- W3206483178 creator A5051000791 @default.
- W3206483178 creator A5063573358 @default.
- W3206483178 creator A5064263510 @default.
- W3206483178 date "2021-10-08" @default.
- W3206483178 modified "2023-09-24" @default.
- W3206483178 title "Sabotage Detection Using DL Models on EEG Data From a Cognitive-Motor Integration Task" @default.
- W3206483178 cites W106057442 @default.
- W3206483178 cites W1689711448 @default.
- W3206483178 cites W2002930634 @default.
- W3206483178 cites W2003580758 @default.
- W3206483178 cites W2029797897 @default.
- W3206483178 cites W2032593056 @default.
- W3206483178 cites W2064675550 @default.
- W3206483178 cites W2073751873 @default.
- W3206483178 cites W2078379881 @default.
- W3206483178 cites W2096921250 @default.
- W3206483178 cites W2128495200 @default.
- W3206483178 cites W2136922672 @default.
- W3206483178 cites W2143689371 @default.
- W3206483178 cites W2270470215 @default.
- W3206483178 cites W2311582914 @default.
- W3206483178 cites W2337062981 @default.
- W3206483178 cites W2519255342 @default.
- W3206483178 cites W2548241290 @default.
- W3206483178 cites W2742957809 @default.
- W3206483178 cites W2754503302 @default.
- W3206483178 cites W2789876780 @default.
- W3206483178 cites W2898997099 @default.
- W3206483178 cites W2946000228 @default.
- W3206483178 cites W2958750483 @default.
- W3206483178 cites W2994422921 @default.
- W3206483178 cites W3000550362 @default.
- W3206483178 cites W3021673939 @default.
- W3206483178 cites W3036316969 @default.
- W3206483178 cites W3038771310 @default.
- W3206483178 cites W3085584217 @default.
- W3206483178 cites W3096595861 @default.
- W3206483178 cites W3097458514 @default.
- W3206483178 cites W4234334792 @default.
- W3206483178 cites W4299616802 @default.
- W3206483178 doi "https://doi.org/10.3389/fnhum.2021.662875" @default.
- W3206483178 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8531592" @default.
- W3206483178 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34690715" @default.
- W3206483178 hasPublicationYear "2021" @default.
- W3206483178 type Work @default.
- W3206483178 sameAs 3206483178 @default.
- W3206483178 citedByCount "1" @default.
- W3206483178 countsByYear W32064831782023 @default.
- W3206483178 crossrefType "journal-article" @default.
- W3206483178 hasAuthorship W3206483178A5008850404 @default.
- W3206483178 hasAuthorship W3206483178A5012463337 @default.
- W3206483178 hasAuthorship W3206483178A5051000791 @default.
- W3206483178 hasAuthorship W3206483178A5063573358 @default.
- W3206483178 hasAuthorship W3206483178A5064263510 @default.
- W3206483178 hasBestOaLocation W32064831781 @default.
- W3206483178 hasConcept C119857082 @default.
- W3206483178 hasConcept C127413603 @default.
- W3206483178 hasConcept C149635348 @default.
- W3206483178 hasConcept C150594956 @default.
- W3206483178 hasConcept C153180895 @default.
- W3206483178 hasConcept C154945302 @default.
- W3206483178 hasConcept C15744967 @default.
- W3206483178 hasConcept C169760540 @default.
- W3206483178 hasConcept C169900460 @default.
- W3206483178 hasConcept C173201364 @default.
- W3206483178 hasConcept C190385971 @default.
- W3206483178 hasConcept C201995342 @default.
- W3206483178 hasConcept C2778426673 @default.
- W3206483178 hasConcept C2780451532 @default.
- W3206483178 hasConcept C28490314 @default.
- W3206483178 hasConcept C3017944768 @default.
- W3206483178 hasConcept C41008148 @default.
- W3206483178 hasConcept C522805319 @default.
- W3206483178 hasConcept C54808283 @default.
- W3206483178 hasConcept C71924100 @default.
- W3206483178 hasConcept C81363708 @default.
- W3206483178 hasConcept C95623464 @default.
- W3206483178 hasConcept C99454951 @default.
- W3206483178 hasConceptScore W3206483178C119857082 @default.
- W3206483178 hasConceptScore W3206483178C127413603 @default.
- W3206483178 hasConceptScore W3206483178C149635348 @default.
- W3206483178 hasConceptScore W3206483178C150594956 @default.
- W3206483178 hasConceptScore W3206483178C153180895 @default.
- W3206483178 hasConceptScore W3206483178C154945302 @default.
- W3206483178 hasConceptScore W3206483178C15744967 @default.
- W3206483178 hasConceptScore W3206483178C169760540 @default.
- W3206483178 hasConceptScore W3206483178C169900460 @default.
- W3206483178 hasConceptScore W3206483178C173201364 @default.
- W3206483178 hasConceptScore W3206483178C190385971 @default.
- W3206483178 hasConceptScore W3206483178C201995342 @default.
- W3206483178 hasConceptScore W3206483178C2778426673 @default.
- W3206483178 hasConceptScore W3206483178C2780451532 @default.
- W3206483178 hasConceptScore W3206483178C28490314 @default.
- W3206483178 hasConceptScore W3206483178C3017944768 @default.
- W3206483178 hasConceptScore W3206483178C41008148 @default.
- W3206483178 hasConceptScore W3206483178C522805319 @default.