Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206487194> ?p ?o ?g. }
- W3206487194 abstract "Statistical shape modeling (SSM) characterizes anatomical variations in a population of shapes generated from medical images. SSM requires consistent shape representation across samples in shape cohort. Establishing this representation entails a processing pipeline that includes anatomy segmentation, re-sampling, registration, and non-linear optimization. These shape representations are then used to extract low-dimensional shape descriptors that facilitate subsequent analyses in different applications. However, the current process of obtaining these shape descriptors from imaging data relies on human and computational resources, requiring domain expertise for segmenting anatomies of interest. Moreover, this same taxing pipeline needs to be repeated to infer shape descriptors for new image data using a pre-trained/existing shape model. Here, we propose DeepSSM, a deep learning-based framework for learning the functional mapping from images to low-dimensional shape descriptors and their associated shape representations, thereby inferring statistical representation of anatomy directly from 3D images. Once trained using an existing shape model, DeepSSM circumvents the heavy and manual pre-processing and segmentation and significantly improves the computational time, making it a viable solution for fully end-to-end SSM applications. In addition, we introduce a model-based data-augmentation strategy to address data scarcity. Finally, this paper presents and analyzes two different architectural variants of DeepSSM with different loss functions using three medical datasets and their downstream clinical application. Experiments showcase that DeepSSM performs comparably or better to the state-of-the-art SSM both quantitatively and on application-driven downstream tasks. Therefore, DeepSSM aims to provide a comprehensive blueprint for deep learning-based image-to-shape models." @default.
- W3206487194 created "2021-10-25" @default.
- W3206487194 creator A5000258401 @default.
- W3206487194 creator A5028216970 @default.
- W3206487194 creator A5028626913 @default.
- W3206487194 creator A5068780431 @default.
- W3206487194 creator A5072653830 @default.
- W3206487194 creator A5085364817 @default.
- W3206487194 date "2021-10-14" @default.
- W3206487194 modified "2023-09-26" @default.
- W3206487194 title "DeepSSM: A Blueprint for Image-to-Shape Deep Learning Models." @default.
- W3206487194 cites W1251994293 @default.
- W3206487194 cites W1533861849 @default.
- W3206487194 cites W1574225613 @default.
- W3206487194 cites W1677182931 @default.
- W3206487194 cites W1826158161 @default.
- W3206487194 cites W1836465849 @default.
- W3206487194 cites W1901129140 @default.
- W3206487194 cites W1989621150 @default.
- W3206487194 cites W1999611789 @default.
- W3206487194 cites W2007153649 @default.
- W3206487194 cites W2019605796 @default.
- W3206487194 cites W2028835002 @default.
- W3206487194 cites W2041371695 @default.
- W3206487194 cites W2044097773 @default.
- W3206487194 cites W2047161559 @default.
- W3206487194 cites W2086826657 @default.
- W3206487194 cites W2090056811 @default.
- W3206487194 cites W2099530880 @default.
- W3206487194 cites W2100983000 @default.
- W3206487194 cites W2110633736 @default.
- W3206487194 cites W2112796928 @default.
- W3206487194 cites W2113576511 @default.
- W3206487194 cites W2157908245 @default.
- W3206487194 cites W2158832729 @default.
- W3206487194 cites W2161842434 @default.
- W3206487194 cites W2170167891 @default.
- W3206487194 cites W2399244897 @default.
- W3206487194 cites W2408662644 @default.
- W3206487194 cites W2587890967 @default.
- W3206487194 cites W2604920239 @default.
- W3206487194 cites W2621155080 @default.
- W3206487194 cites W2733044207 @default.
- W3206487194 cites W2753582981 @default.
- W3206487194 cites W2795659077 @default.
- W3206487194 cites W2806119116 @default.
- W3206487194 cites W2883037350 @default.
- W3206487194 cites W2887719889 @default.
- W3206487194 cites W2892942695 @default.
- W3206487194 cites W2897666265 @default.
- W3206487194 cites W2897890494 @default.
- W3206487194 cites W2914806156 @default.
- W3206487194 cites W2962964932 @default.
- W3206487194 cites W2963351448 @default.
- W3206487194 cites W2964121744 @default.
- W3206487194 cites W2964137676 @default.
- W3206487194 cites W2979998000 @default.
- W3206487194 cites W3004983689 @default.
- W3206487194 cites W3043726481 @default.
- W3206487194 cites W3044884776 @default.
- W3206487194 cites W3083541824 @default.
- W3206487194 cites W3098269293 @default.
- W3206487194 cites W360623563 @default.
- W3206487194 hasPublicationYear "2021" @default.
- W3206487194 type Work @default.
- W3206487194 sameAs 3206487194 @default.
- W3206487194 citedByCount "0" @default.
- W3206487194 crossrefType "posted-content" @default.
- W3206487194 hasAuthorship W3206487194A5000258401 @default.
- W3206487194 hasAuthorship W3206487194A5028216970 @default.
- W3206487194 hasAuthorship W3206487194A5028626913 @default.
- W3206487194 hasAuthorship W3206487194A5068780431 @default.
- W3206487194 hasAuthorship W3206487194A5072653830 @default.
- W3206487194 hasAuthorship W3206487194A5085364817 @default.
- W3206487194 hasConcept C108583219 @default.
- W3206487194 hasConcept C112604564 @default.
- W3206487194 hasConcept C114289077 @default.
- W3206487194 hasConcept C119857082 @default.
- W3206487194 hasConcept C127413603 @default.
- W3206487194 hasConcept C129641003 @default.
- W3206487194 hasConcept C144024400 @default.
- W3206487194 hasConcept C149923435 @default.
- W3206487194 hasConcept C153180895 @default.
- W3206487194 hasConcept C154945302 @default.
- W3206487194 hasConcept C155911762 @default.
- W3206487194 hasConcept C17744445 @default.
- W3206487194 hasConcept C199360897 @default.
- W3206487194 hasConcept C199539241 @default.
- W3206487194 hasConcept C2776359362 @default.
- W3206487194 hasConcept C2908647359 @default.
- W3206487194 hasConcept C31972630 @default.
- W3206487194 hasConcept C41008148 @default.
- W3206487194 hasConcept C43521106 @default.
- W3206487194 hasConcept C78519656 @default.
- W3206487194 hasConcept C89600930 @default.
- W3206487194 hasConcept C94625758 @default.
- W3206487194 hasConcept C97686452 @default.
- W3206487194 hasConceptScore W3206487194C108583219 @default.
- W3206487194 hasConceptScore W3206487194C112604564 @default.
- W3206487194 hasConceptScore W3206487194C114289077 @default.