Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206493757> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3206493757 endingPage "117682" @default.
- W3206493757 startingPage "117682" @default.
- W3206493757 abstract "• New kW-class horizontal loop thermosyphon is developed to cool electronic components. • Annular mini channel with porous coating in the evaporator ensures efficient two phase fluid flow. • Thermal resistance of thermosyphon is near 0.03 K/W for the heat load of 100–1750 W. • Efficient device to cool electronic and electric transport components, solar receivers. This article describes the design, fabrication, and heat transfer characteristics of a novel type of loop thermosyphon with a horizontal porous evaporator (LTHPE) of the kW-class heat transfer performance. The main goal of this investigation is to improve the heat transfer intensity by increasing the fluid circulation in the evaporator annular channel. The Bond number Bo ≤ 1–2 is typical of this new device. Such thermosyphon with the evaporator annular thickness equal to, or larger than, the capillary limit exhibits some new properties. An additional (to the gravity field) mechanism of liquid flow enhancement with self-exciting oscillation due to the bubble generation in the annular gap is used for intense and efficient fluid circulation through the thermosyphon evaporator in a preferential direction. Experimental data on heat transfer coefficients in boiling and evaporation inside the porous wick were obtained in the evaporator annular horizontal gap flooded and partially saturated with liquid. Due to the two-phase fluid flow along the annular tube, stabilization of heat transfer has been achieved including the subcooled and saturated liquid boiling with evaporation inside the wick. A thin porous coating on the evaporator wall ensures a 2–2.5-fold increase of heat transfer in comparison with the flow boiling heat transfer in a smooth tube. The thermal performance of the LTHPE was investigated at different filling ratios and LTHPE inclination angles to the horizon. The evaporator envelope was made from a copper tube of length 200 mm. A copper sintered powder wick was installed inside the evaporator, and pure water was used as the working fluid. The wick thickness was less than 1 mm. The thermal resistance of the condenser was equal to 0.01 °C/W . The LTHPE evaporator and condenser are connected with each other by flexible minipipes for transferring vapor and liquid. The thermal resistance of LTHPE is relatively insensitive to any changes in inclination, when the angle of the latter to the horizon exceeds 18°. The total thermal resistance of LTHPE does not exceed 0.03 K/W (thermal resistance of evaporator is near 0.02 K/W) with the heat load of 100–1750 W. This device guaranties a shortened start-up time, has a decreased evaporator wall temperature, has a small temperature hysteresis on increasing/decreasing the heat load, and suppresses the temperature pulsations inside the evaporator. The determination of the thermal resistance of evaporator and condenser and the analysis of the temperature field along the LTHPE were the main goals of this research." @default.
- W3206493757 created "2021-10-25" @default.
- W3206493757 creator A5026820085 @default.
- W3206493757 creator A5034648470 @default.
- W3206493757 creator A5065057198 @default.
- W3206493757 creator A5086025007 @default.
- W3206493757 date "2022-01-01" @default.
- W3206493757 modified "2023-09-27" @default.
- W3206493757 title "Development and testing of a novel horizontal loop thermosyphon as a kW-class heat transfer device" @default.
- W3206493757 cites W1675752037 @default.
- W3206493757 cites W1788648187 @default.
- W3206493757 cites W1989549648 @default.
- W3206493757 cites W2005620485 @default.
- W3206493757 cites W2014372180 @default.
- W3206493757 cites W2026326016 @default.
- W3206493757 cites W2039096883 @default.
- W3206493757 cites W2040920578 @default.
- W3206493757 cites W2072443262 @default.
- W3206493757 cites W2164327503 @default.
- W3206493757 cites W2169448699 @default.
- W3206493757 cites W2261221149 @default.
- W3206493757 cites W2466147561 @default.
- W3206493757 cites W2561629229 @default.
- W3206493757 cites W2600823285 @default.
- W3206493757 cites W2613434172 @default.
- W3206493757 cites W2768725566 @default.
- W3206493757 cites W2884978533 @default.
- W3206493757 cites W3013591234 @default.
- W3206493757 cites W3093200048 @default.
- W3206493757 doi "https://doi.org/10.1016/j.applthermaleng.2021.117682" @default.
- W3206493757 hasPublicationYear "2022" @default.
- W3206493757 type Work @default.
- W3206493757 sameAs 3206493757 @default.
- W3206493757 citedByCount "8" @default.
- W3206493757 countsByYear W32064937572022 @default.
- W3206493757 countsByYear W32064937572023 @default.
- W3206493757 crossrefType "journal-article" @default.
- W3206493757 hasAuthorship W3206493757A5026820085 @default.
- W3206493757 hasAuthorship W3206493757A5034648470 @default.
- W3206493757 hasAuthorship W3206493757A5065057198 @default.
- W3206493757 hasAuthorship W3206493757A5086025007 @default.
- W3206493757 hasConcept C107706546 @default.
- W3206493757 hasConcept C121332964 @default.
- W3206493757 hasConcept C137693562 @default.
- W3206493757 hasConcept C157777378 @default.
- W3206493757 hasConcept C192562407 @default.
- W3206493757 hasConcept C2777777821 @default.
- W3206493757 hasConcept C2779301550 @default.
- W3206493757 hasConcept C29700514 @default.
- W3206493757 hasConcept C37728375 @default.
- W3206493757 hasConcept C41619986 @default.
- W3206493757 hasConcept C50517652 @default.
- W3206493757 hasConcept C57879066 @default.
- W3206493757 hasConcept C61441594 @default.
- W3206493757 hasConcept C91311341 @default.
- W3206493757 hasConcept C97355855 @default.
- W3206493757 hasConceptScore W3206493757C107706546 @default.
- W3206493757 hasConceptScore W3206493757C121332964 @default.
- W3206493757 hasConceptScore W3206493757C137693562 @default.
- W3206493757 hasConceptScore W3206493757C157777378 @default.
- W3206493757 hasConceptScore W3206493757C192562407 @default.
- W3206493757 hasConceptScore W3206493757C2777777821 @default.
- W3206493757 hasConceptScore W3206493757C2779301550 @default.
- W3206493757 hasConceptScore W3206493757C29700514 @default.
- W3206493757 hasConceptScore W3206493757C37728375 @default.
- W3206493757 hasConceptScore W3206493757C41619986 @default.
- W3206493757 hasConceptScore W3206493757C50517652 @default.
- W3206493757 hasConceptScore W3206493757C57879066 @default.
- W3206493757 hasConceptScore W3206493757C61441594 @default.
- W3206493757 hasConceptScore W3206493757C91311341 @default.
- W3206493757 hasConceptScore W3206493757C97355855 @default.
- W3206493757 hasLocation W32064937571 @default.
- W3206493757 hasOpenAccess W3206493757 @default.
- W3206493757 hasPrimaryLocation W32064937571 @default.
- W3206493757 hasRelatedWork W1515142482 @default.
- W3206493757 hasRelatedWork W2048310957 @default.
- W3206493757 hasRelatedWork W2071653847 @default.
- W3206493757 hasRelatedWork W2413818858 @default.
- W3206493757 hasRelatedWork W2578277399 @default.
- W3206493757 hasRelatedWork W2902909175 @default.
- W3206493757 hasRelatedWork W3126710986 @default.
- W3206493757 hasRelatedWork W4224247365 @default.
- W3206493757 hasRelatedWork W2187848341 @default.
- W3206493757 hasRelatedWork W2588893562 @default.
- W3206493757 hasVolume "200" @default.
- W3206493757 isParatext "false" @default.
- W3206493757 isRetracted "false" @default.
- W3206493757 magId "3206493757" @default.
- W3206493757 workType "article" @default.