Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206494906> ?p ?o ?g. }
- W3206494906 abstract "Bayesian neural networks are theoretically well-understood only in the infinite-width limit, where Gaussian priors over network weights yield Gaussian priors over network outputs. Recent work has suggested that finite Bayesian networks may outperform their infinite counterparts, but their non-Gaussian function space priors have been characterized only though perturbative approaches. Here, we derive exact solutions for the function space priors for individual input examples of a class of finite fully-connected feedforward Bayesian neural networks. For deep linear networks, the prior has a simple expression in terms of the Meijer $G$-function. The prior of a finite ReLU network is a mixture of the priors of linear networks of smaller widths, corresponding to different numbers of active units in each layer. Our results unify previous descriptions of finite network priors in terms of their tail decay and large-width behavior." @default.
- W3206494906 created "2021-10-25" @default.
- W3206494906 creator A5023195984 @default.
- W3206494906 creator A5063822685 @default.
- W3206494906 date "2021-04-23" @default.
- W3206494906 modified "2023-09-26" @default.
- W3206494906 title "Exact marginal prior distributions of finite Bayesian neural networks" @default.
- W3206494906 cites W1489991626 @default.
- W3206494906 cites W1530042113 @default.
- W3206494906 cites W2004216344 @default.
- W3206494906 cites W2080059175 @default.
- W3206494906 cites W2081299583 @default.
- W3206494906 cites W2111051539 @default.
- W3206494906 cites W2154087390 @default.
- W3206494906 cites W2157005274 @default.
- W3206494906 cites W2320321016 @default.
- W3206494906 cites W2550524953 @default.
- W3206494906 cites W2557283755 @default.
- W3206494906 cites W2765572925 @default.
- W3206494906 cites W2911504931 @default.
- W3206494906 cites W2913473169 @default.
- W3206494906 cites W2943838153 @default.
- W3206494906 cites W2962685794 @default.
- W3206494906 cites W2964052793 @default.
- W3206494906 cites W2970289029 @default.
- W3206494906 cites W2994922086 @default.
- W3206494906 cites W3006861283 @default.
- W3206494906 cites W3014864774 @default.
- W3206494906 cites W3034669169 @default.
- W3206494906 cites W3035216170 @default.
- W3206494906 cites W3035679810 @default.
- W3206494906 cites W3037003270 @default.
- W3206494906 cites W3086778125 @default.
- W3206494906 cites W3090487863 @default.
- W3206494906 cites W3101069636 @default.
- W3206494906 cites W3113190353 @default.
- W3206494906 cites W3113996169 @default.
- W3206494906 cites W3123387470 @default.
- W3206494906 cites W3130833330 @default.
- W3206494906 cites W3166609963 @default.
- W3206494906 cites W3167104264 @default.
- W3206494906 cites W3167954842 @default.
- W3206494906 cites W3178741258 @default.
- W3206494906 cites W3181384422 @default.
- W3206494906 cites W3202780401 @default.
- W3206494906 cites W568726942 @default.
- W3206494906 hasPublicationYear "2021" @default.
- W3206494906 type Work @default.
- W3206494906 sameAs 3206494906 @default.
- W3206494906 citedByCount "6" @default.
- W3206494906 countsByYear W32064949062021 @default.
- W3206494906 crossrefType "posted-content" @default.
- W3206494906 hasAuthorship W3206494906A5023195984 @default.
- W3206494906 hasAuthorship W3206494906A5063822685 @default.
- W3206494906 hasConcept C107673813 @default.
- W3206494906 hasConcept C111919701 @default.
- W3206494906 hasConcept C11413529 @default.
- W3206494906 hasConcept C121332964 @default.
- W3206494906 hasConcept C134306372 @default.
- W3206494906 hasConcept C14036430 @default.
- W3206494906 hasConcept C154945302 @default.
- W3206494906 hasConcept C162392398 @default.
- W3206494906 hasConcept C163716315 @default.
- W3206494906 hasConcept C177769412 @default.
- W3206494906 hasConcept C2778572836 @default.
- W3206494906 hasConcept C28826006 @default.
- W3206494906 hasConcept C33923547 @default.
- W3206494906 hasConcept C41008148 @default.
- W3206494906 hasConcept C50644808 @default.
- W3206494906 hasConcept C62520636 @default.
- W3206494906 hasConcept C78458016 @default.
- W3206494906 hasConcept C86803240 @default.
- W3206494906 hasConceptScore W3206494906C107673813 @default.
- W3206494906 hasConceptScore W3206494906C111919701 @default.
- W3206494906 hasConceptScore W3206494906C11413529 @default.
- W3206494906 hasConceptScore W3206494906C121332964 @default.
- W3206494906 hasConceptScore W3206494906C134306372 @default.
- W3206494906 hasConceptScore W3206494906C14036430 @default.
- W3206494906 hasConceptScore W3206494906C154945302 @default.
- W3206494906 hasConceptScore W3206494906C162392398 @default.
- W3206494906 hasConceptScore W3206494906C163716315 @default.
- W3206494906 hasConceptScore W3206494906C177769412 @default.
- W3206494906 hasConceptScore W3206494906C2778572836 @default.
- W3206494906 hasConceptScore W3206494906C28826006 @default.
- W3206494906 hasConceptScore W3206494906C33923547 @default.
- W3206494906 hasConceptScore W3206494906C41008148 @default.
- W3206494906 hasConceptScore W3206494906C50644808 @default.
- W3206494906 hasConceptScore W3206494906C62520636 @default.
- W3206494906 hasConceptScore W3206494906C78458016 @default.
- W3206494906 hasConceptScore W3206494906C86803240 @default.
- W3206494906 hasOpenAccess W3206494906 @default.
- W3206494906 hasRelatedWork W1517128959 @default.
- W3206494906 hasRelatedWork W1773405456 @default.
- W3206494906 hasRelatedWork W1949528424 @default.
- W3206494906 hasRelatedWork W1981934427 @default.
- W3206494906 hasRelatedWork W2009338617 @default.
- W3206494906 hasRelatedWork W2041278781 @default.
- W3206494906 hasRelatedWork W2114298859 @default.
- W3206494906 hasRelatedWork W2134171370 @default.
- W3206494906 hasRelatedWork W2490160013 @default.