Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206502859> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3206502859 endingPage "8" @default.
- W3206502859 startingPage "1" @default.
- W3206502859 abstract "Abstract With the introduction of full convolutional neural product networks, semantic segmentation networks have also been widely used in the field of deep learning. Most lane detection tasks are currently done on the basis of semantic segmentation networks, so the development of semantic segmentation also directly determines the progress of lane detection. Methods: The development of semantic segmentation networks and the performance comparison between different model frames are used to summarize the improvement points as well as the advantages and disadvantages of each approach. Current lane detection network models with good performance based on semantic segmentation networks are described and the performance between the models is compared. Result: The current development of deep learning-based lane detection methods has been very fruitful, with significant improvements in network performance, but they cannot yet be applied in practice. For example, lightweight networks are not stable enough in extracting features, while deep neural networks are too ineffective in real time. Conclusion: Lane detection is of high research value as a key technology for unmanned driving. However, most of the current neural network methods have not been studied from a practical point of view, and there are few methods that use multiple frames as a basis for research. Therefore, in the future how to efficiently use continuous images for lane detection is a key direction to be researched in the future." @default.
- W3206502859 created "2021-10-25" @default.
- W3206502859 creator A5012634371 @default.
- W3206502859 creator A5064150904 @default.
- W3206502859 date "2021-01-01" @default.
- W3206502859 modified "2023-10-18" @default.
- W3206502859 title "A Review of Lane Detection Based on Semantic Segmentation" @default.
- W3206502859 cites W1901129140 @default.
- W3206502859 cites W1903029394 @default.
- W3206502859 cites W2560023338 @default.
- W3206502859 cites W2565639579 @default.
- W3206502859 cites W2740036778 @default.
- W3206502859 cites W2780740184 @default.
- W3206502859 cites W2794815195 @default.
- W3206502859 cites W2892096486 @default.
- W3206502859 cites W2963150697 @default.
- W3206502859 cites W2963881378 @default.
- W3206502859 cites W2964199920 @default.
- W3206502859 cites W2981441441 @default.
- W3206502859 cites W3021074965 @default.
- W3206502859 cites W3043472241 @default.
- W3206502859 cites W3090532574 @default.
- W3206502859 cites W3100397002 @default.
- W3206502859 cites W3108280663 @default.
- W3206502859 doi "https://doi.org/10.21307/ijanmc-2021-021" @default.
- W3206502859 hasPublicationYear "2021" @default.
- W3206502859 type Work @default.
- W3206502859 sameAs 3206502859 @default.
- W3206502859 citedByCount "0" @default.
- W3206502859 crossrefType "journal-article" @default.
- W3206502859 hasAuthorship W3206502859A5012634371 @default.
- W3206502859 hasAuthorship W3206502859A5064150904 @default.
- W3206502859 hasBestOaLocation W32065028591 @default.
- W3206502859 hasConcept C108583219 @default.
- W3206502859 hasConcept C119857082 @default.
- W3206502859 hasConcept C153180895 @default.
- W3206502859 hasConcept C154945302 @default.
- W3206502859 hasConcept C202444582 @default.
- W3206502859 hasConcept C26517878 @default.
- W3206502859 hasConcept C33923547 @default.
- W3206502859 hasConcept C38652104 @default.
- W3206502859 hasConcept C41008148 @default.
- W3206502859 hasConcept C50644808 @default.
- W3206502859 hasConcept C81363708 @default.
- W3206502859 hasConcept C89600930 @default.
- W3206502859 hasConcept C9652623 @default.
- W3206502859 hasConceptScore W3206502859C108583219 @default.
- W3206502859 hasConceptScore W3206502859C119857082 @default.
- W3206502859 hasConceptScore W3206502859C153180895 @default.
- W3206502859 hasConceptScore W3206502859C154945302 @default.
- W3206502859 hasConceptScore W3206502859C202444582 @default.
- W3206502859 hasConceptScore W3206502859C26517878 @default.
- W3206502859 hasConceptScore W3206502859C33923547 @default.
- W3206502859 hasConceptScore W3206502859C38652104 @default.
- W3206502859 hasConceptScore W3206502859C41008148 @default.
- W3206502859 hasConceptScore W3206502859C50644808 @default.
- W3206502859 hasConceptScore W3206502859C81363708 @default.
- W3206502859 hasConceptScore W3206502859C89600930 @default.
- W3206502859 hasConceptScore W3206502859C9652623 @default.
- W3206502859 hasIssue "3" @default.
- W3206502859 hasLocation W32065028591 @default.
- W3206502859 hasLocation W32065028592 @default.
- W3206502859 hasOpenAccess W3206502859 @default.
- W3206502859 hasPrimaryLocation W32065028591 @default.
- W3206502859 hasRelatedWork W2732542196 @default.
- W3206502859 hasRelatedWork W2738221750 @default.
- W3206502859 hasRelatedWork W2795329967 @default.
- W3206502859 hasRelatedWork W3102253946 @default.
- W3206502859 hasRelatedWork W3144574764 @default.
- W3206502859 hasRelatedWork W4226289457 @default.
- W3206502859 hasRelatedWork W4293211451 @default.
- W3206502859 hasRelatedWork W4311257506 @default.
- W3206502859 hasRelatedWork W4312831135 @default.
- W3206502859 hasRelatedWork W564581980 @default.
- W3206502859 hasVolume "6" @default.
- W3206502859 isParatext "false" @default.
- W3206502859 isRetracted "false" @default.
- W3206502859 magId "3206502859" @default.
- W3206502859 workType "article" @default.