Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206556723> ?p ?o ?g. }
- W3206556723 endingPage "4063" @default.
- W3206556723 startingPage "4063" @default.
- W3206556723 abstract "Climate change has proven to have a profound impact on the growth of vegetation from various points of view. Understanding how vegetation changes and its response to climatic shift is of vital importance for describing their mutual relationships and projecting future land–climate interactions. Arid areas are considered to be regions that respond most strongly to climate change. Xinjiang, as a typical dryland in China, has received great attention lately for its unique ecological environment. However, comprehensive studies examining vegetation change and its driving factors across Xinjiang are rare. Here, we used the remote sensing datasets (MOD13A2 and TerraClimate) and data of meteorological stations to investigate the trends in the dynamic change in the Normalized Difference Vegetation Index (NDVI) and its response to climate change from 2000 to 2019 across Xinjiang based on the Google Earth platform. We found that the increment rates of growth-season mean and maximum NDVI were 0.0011 per year and 0.0013 per year, respectively, by averaging all of the pixels from the region. The results also showed that, compared with other land use types, cropland had the fastest greening rate, which was mainly distributed among the northern Tianshan Mountains and Southern Junggar Basin and the northern margin of the Tarim Basin. The vegetation browning areas primarily spread over the Ili River Valley where most grasslands were distributed. Moreover, there was a trend of warming and wetting across Xinjiang over the past 20 years; this was determined by analyzing the climate data. Through correlation analysis, we found that the contribution of precipitation to NDVI (R2 = 0.48) was greater than that of temperature to NDVI (R2 = 0.42) throughout Xinjiang. The Standardized Precipitation and Evapotranspiration Index (SPEI) was also computed to better investigate the correlation between climate change and vegetation growth in arid areas. Our results could improve the local management of dryland ecosystems and provide insights into the complex interaction between vegetation and climate change." @default.
- W3206556723 created "2021-10-25" @default.
- W3206556723 creator A5010740814 @default.
- W3206556723 creator A5014060097 @default.
- W3206556723 creator A5016449371 @default.
- W3206556723 creator A5038986917 @default.
- W3206556723 creator A5046793164 @default.
- W3206556723 creator A5077536887 @default.
- W3206556723 creator A5087000027 @default.
- W3206556723 creator A5088795841 @default.
- W3206556723 date "2021-10-11" @default.
- W3206556723 modified "2023-10-16" @default.
- W3206556723 title "Dynamics of Vegetation Greenness and Its Response to Climate Change in Xinjiang over the Past Two Decades" @default.
- W3206556723 cites W1910947081 @default.
- W3206556723 cites W1965347260 @default.
- W3206556723 cites W1969454029 @default.
- W3206556723 cites W1974414156 @default.
- W3206556723 cites W1987923818 @default.
- W3206556723 cites W1995077345 @default.
- W3206556723 cites W1995970464 @default.
- W3206556723 cites W2003795236 @default.
- W3206556723 cites W2007285204 @default.
- W3206556723 cites W2009202065 @default.
- W3206556723 cites W2010546627 @default.
- W3206556723 cites W2034672914 @default.
- W3206556723 cites W2059379980 @default.
- W3206556723 cites W2060848753 @default.
- W3206556723 cites W2063623478 @default.
- W3206556723 cites W2071978272 @default.
- W3206556723 cites W2077968790 @default.
- W3206556723 cites W2105872959 @default.
- W3206556723 cites W2107258091 @default.
- W3206556723 cites W2113410727 @default.
- W3206556723 cites W2128175703 @default.
- W3206556723 cites W2132874271 @default.
- W3206556723 cites W2133501143 @default.
- W3206556723 cites W2144423540 @default.
- W3206556723 cites W2151454884 @default.
- W3206556723 cites W2153989276 @default.
- W3206556723 cites W2193199107 @default.
- W3206556723 cites W2237880282 @default.
- W3206556723 cites W2336426693 @default.
- W3206556723 cites W2581741828 @default.
- W3206556723 cites W2617881199 @default.
- W3206556723 cites W2735223817 @default.
- W3206556723 cites W2746921521 @default.
- W3206556723 cites W2784327149 @default.
- W3206556723 cites W2803389660 @default.
- W3206556723 cites W2909415058 @default.
- W3206556723 cites W2910440892 @default.
- W3206556723 cites W2922633580 @default.
- W3206556723 cites W2963057307 @default.
- W3206556723 cites W2980626289 @default.
- W3206556723 cites W2980990633 @default.
- W3206556723 cites W3003362684 @default.
- W3206556723 cites W3011325498 @default.
- W3206556723 cites W3082811894 @default.
- W3206556723 cites W3095576912 @default.
- W3206556723 cites W3114893037 @default.
- W3206556723 cites W3133662003 @default.
- W3206556723 cites W3135377384 @default.
- W3206556723 cites W3161670394 @default.
- W3206556723 cites W4385538084 @default.
- W3206556723 cites W999717842 @default.
- W3206556723 doi "https://doi.org/10.3390/rs13204063" @default.
- W3206556723 hasPublicationYear "2021" @default.
- W3206556723 type Work @default.
- W3206556723 sameAs 3206556723 @default.
- W3206556723 citedByCount "16" @default.
- W3206556723 countsByYear W32065567232022 @default.
- W3206556723 countsByYear W32065567232023 @default.
- W3206556723 crossrefType "journal-article" @default.
- W3206556723 hasAuthorship W3206556723A5010740814 @default.
- W3206556723 hasAuthorship W3206556723A5014060097 @default.
- W3206556723 hasAuthorship W3206556723A5016449371 @default.
- W3206556723 hasAuthorship W3206556723A5038986917 @default.
- W3206556723 hasAuthorship W3206556723A5046793164 @default.
- W3206556723 hasAuthorship W3206556723A5077536887 @default.
- W3206556723 hasAuthorship W3206556723A5087000027 @default.
- W3206556723 hasAuthorship W3206556723A5088795841 @default.
- W3206556723 hasBestOaLocation W32065567231 @default.
- W3206556723 hasConcept C100970517 @default.
- W3206556723 hasConcept C107054158 @default.
- W3206556723 hasConcept C109007969 @default.
- W3206556723 hasConcept C119857082 @default.
- W3206556723 hasConcept C127142870 @default.
- W3206556723 hasConcept C127313418 @default.
- W3206556723 hasConcept C132651083 @default.
- W3206556723 hasConcept C142724271 @default.
- W3206556723 hasConcept C150772632 @default.
- W3206556723 hasConcept C151730666 @default.
- W3206556723 hasConcept C153294291 @default.
- W3206556723 hasConcept C1549246 @default.
- W3206556723 hasConcept C18903297 @default.
- W3206556723 hasConcept C205649164 @default.
- W3206556723 hasConcept C2776133958 @default.
- W3206556723 hasConcept C39432304 @default.
- W3206556723 hasConcept C41008148 @default.