Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206565934> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3206565934 abstract "Deep convolutional neural networks (CNNs) show strong promise for analyzing scientific data in many domains including particle imaging detectors such as a liquid argon time projection chamber (LArTPC). Yet the high sparsity of LArTPC data challenges traditional CNNs which were designed for dense data such as photographs. A naive application of CNNs on LArTPC data results in inefficient computations and a poor scalability to large LArTPC detectors such as the Short Baseline Neutrino Program and Deep Underground Neutrino Experiment. Recently, submanifold sparse convolutional networks (SSCNs) have been proposed to address this class of challenges. We report their performance on a three-dimensional (3D) semantic segmentation task on simulated LArTPC samples. In comparison with standard CNNs, we observe that the computation memory and wall-time cost for inference are reduced by a factor of 364 and 33, respectively, without loss of accuracy. The same factors for 2D samples are found to be 93 and 3.1, respectively. Using SSCN and public 3D LArTPC samples, we present the first machine learning-based approach to the reconstruction of Michel electrons, a standard candle for energy calibration in LArTPC due to their very well-understood energy spectrum. We find a Michel electrons identification efficiency of 93.9% and a 96.7% purity. Reconstructed Michel electron clusters yield 95.4% in average pixel clustering efficiency and 95.5% in purity. The results are compelling in showing the strong promise of scalable data reconstruction technique using deep neural networks for large scale LArTPC detectors." @default.
- W3206565934 created "2021-10-25" @default.
- W3206565934 creator A5040929391 @default.
- W3206565934 creator A5047113172 @default.
- W3206565934 date "2020-07-10" @default.
- W3206565934 modified "2023-10-14" @default.
- W3206565934 title "Scalable deep convolutional neural networks for sparse, locally dense liquid argon time projection chamber data" @default.
- W3206565934 cites W2027598109 @default.
- W3206565934 cites W2128158076 @default.
- W3206565934 cites W2186112994 @default.
- W3206565934 cites W2549491455 @default.
- W3206565934 cites W2579983429 @default.
- W3206565934 cites W2612603565 @default.
- W3206565934 cites W2770036798 @default.
- W3206565934 cites W2800523956 @default.
- W3206565934 cites W2883445762 @default.
- W3206565934 cites W2888500435 @default.
- W3206565934 cites W2919115771 @default.
- W3206565934 doi "https://doi.org/10.1103/physrevd.102.012005" @default.
- W3206565934 hasPublicationYear "2020" @default.
- W3206565934 type Work @default.
- W3206565934 sameAs 3206565934 @default.
- W3206565934 citedByCount "21" @default.
- W3206565934 countsByYear W32065659342020 @default.
- W3206565934 countsByYear W32065659342021 @default.
- W3206565934 countsByYear W32065659342022 @default.
- W3206565934 countsByYear W32065659342023 @default.
- W3206565934 crossrefType "journal-article" @default.
- W3206565934 hasAuthorship W3206565934A5040929391 @default.
- W3206565934 hasAuthorship W3206565934A5047113172 @default.
- W3206565934 hasBestOaLocation W32065659341 @default.
- W3206565934 hasConcept C108583219 @default.
- W3206565934 hasConcept C109214941 @default.
- W3206565934 hasConcept C11413529 @default.
- W3206565934 hasConcept C121332964 @default.
- W3206565934 hasConcept C153180895 @default.
- W3206565934 hasConcept C154945302 @default.
- W3206565934 hasConcept C169192303 @default.
- W3206565934 hasConcept C186453547 @default.
- W3206565934 hasConcept C41008148 @default.
- W3206565934 hasConcept C45374587 @default.
- W3206565934 hasConcept C48044578 @default.
- W3206565934 hasConcept C76155785 @default.
- W3206565934 hasConcept C77088390 @default.
- W3206565934 hasConcept C81363708 @default.
- W3206565934 hasConcept C94915269 @default.
- W3206565934 hasConceptScore W3206565934C108583219 @default.
- W3206565934 hasConceptScore W3206565934C109214941 @default.
- W3206565934 hasConceptScore W3206565934C11413529 @default.
- W3206565934 hasConceptScore W3206565934C121332964 @default.
- W3206565934 hasConceptScore W3206565934C153180895 @default.
- W3206565934 hasConceptScore W3206565934C154945302 @default.
- W3206565934 hasConceptScore W3206565934C169192303 @default.
- W3206565934 hasConceptScore W3206565934C186453547 @default.
- W3206565934 hasConceptScore W3206565934C41008148 @default.
- W3206565934 hasConceptScore W3206565934C45374587 @default.
- W3206565934 hasConceptScore W3206565934C48044578 @default.
- W3206565934 hasConceptScore W3206565934C76155785 @default.
- W3206565934 hasConceptScore W3206565934C77088390 @default.
- W3206565934 hasConceptScore W3206565934C81363708 @default.
- W3206565934 hasConceptScore W3206565934C94915269 @default.
- W3206565934 hasFunder F4320306084 @default.
- W3206565934 hasFunder F4320332359 @default.
- W3206565934 hasIssue "1" @default.
- W3206565934 hasLocation W32065659341 @default.
- W3206565934 hasLocation W32065659342 @default.
- W3206565934 hasLocation W32065659343 @default.
- W3206565934 hasOpenAccess W3206565934 @default.
- W3206565934 hasPrimaryLocation W32065659341 @default.
- W3206565934 hasRelatedWork W2731899572 @default.
- W3206565934 hasRelatedWork W2999805992 @default.
- W3206565934 hasRelatedWork W3011074480 @default.
- W3206565934 hasRelatedWork W3116150086 @default.
- W3206565934 hasRelatedWork W3133861977 @default.
- W3206565934 hasRelatedWork W3192840557 @default.
- W3206565934 hasRelatedWork W4200173597 @default.
- W3206565934 hasRelatedWork W4291897433 @default.
- W3206565934 hasRelatedWork W4312417841 @default.
- W3206565934 hasRelatedWork W4321369474 @default.
- W3206565934 hasVolume "102" @default.
- W3206565934 isParatext "false" @default.
- W3206565934 isRetracted "false" @default.
- W3206565934 magId "3206565934" @default.
- W3206565934 workType "article" @default.