Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206566810> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3206566810 endingPage "18" @default.
- W3206566810 startingPage "12" @default.
- W3206566810 abstract "In recent years, the complexity of making music has lessened, resulting in many individuals making music and submitting it to streaming media. Because of the huge music streaming media, people are spending a lot of time seeking for certain songs. As a result, the capacity to swiftly categorise music genres has become increasingly important. As machine learning and deep learning technologies progress, convolutional neural networks (CNN) are being employed in several fields, and several CNN-based versions have emerged one after the other. Traditional music genre classification necessitates professional abilities to manually extract features from time series data. We developed a music genre categorization model using CNN's audio advantages and features to save users time while searching for different types of music. During the pre-processing, Librosa is used to convert the original audio files into Mel spectrums. The Mel spectrum is transformed and supplied into the suggested CNN model for training. On the GTZAN dataset, the 10 classifiers' decisions are subjected to a majority vote, with an average accuracy of 84 percent. Music genre categorization using neural networks (NNs) has seen some modest success in recent years. The success of song libraries, machine learning techniques, input formats, and the types of NNs utilised has all been mixed. This article looks at some of the machine learning approaches utilised in this sector. It also involves research on musical genre classification. Images of spectrograms produced from time slices of songs are fed into a neural network (NN) to classify the songs into different musical genres." @default.
- W3206566810 created "2021-10-25" @default.
- W3206566810 creator A5007025689 @default.
- W3206566810 creator A5010586930 @default.
- W3206566810 creator A5041334335 @default.
- W3206566810 date "2021-05-20" @default.
- W3206566810 modified "2023-09-27" @default.
- W3206566810 title "MUSIC GENRE CLASSIFICATION USING NEURAL NETWORKS" @default.
- W3206566810 cites W1924770834 @default.
- W3206566810 cites W2071103260 @default.
- W3206566810 cites W2097807493 @default.
- W3206566810 cites W2117539524 @default.
- W3206566810 cites W2133824856 @default.
- W3206566810 cites W2176412452 @default.
- W3206566810 cites W2187089797 @default.
- W3206566810 cites W2407232422 @default.
- W3206566810 cites W2795791968 @default.
- W3206566810 cites W2889391573 @default.
- W3206566810 cites W2890267272 @default.
- W3206566810 cites W2902415114 @default.
- W3206566810 cites W2949117887 @default.
- W3206566810 cites W2964121744 @default.
- W3206566810 cites W585519466 @default.
- W3206566810 doi "https://doi.org/10.26483/ijarcs.v12i5.6771" @default.
- W3206566810 hasPublicationYear "2021" @default.
- W3206566810 type Work @default.
- W3206566810 sameAs 3206566810 @default.
- W3206566810 citedByCount "2" @default.
- W3206566810 countsByYear W32065668102022 @default.
- W3206566810 countsByYear W32065668102023 @default.
- W3206566810 crossrefType "journal-article" @default.
- W3206566810 hasAuthorship W3206566810A5007025689 @default.
- W3206566810 hasAuthorship W3206566810A5010586930 @default.
- W3206566810 hasAuthorship W3206566810A5041334335 @default.
- W3206566810 hasBestOaLocation W32065668101 @default.
- W3206566810 hasConcept C108583219 @default.
- W3206566810 hasConcept C119857082 @default.
- W3206566810 hasConcept C142362112 @default.
- W3206566810 hasConcept C153349607 @default.
- W3206566810 hasConcept C154945302 @default.
- W3206566810 hasConcept C2777946086 @default.
- W3206566810 hasConcept C28490314 @default.
- W3206566810 hasConcept C41008148 @default.
- W3206566810 hasConcept C45273575 @default.
- W3206566810 hasConcept C50644808 @default.
- W3206566810 hasConcept C558565934 @default.
- W3206566810 hasConcept C81363708 @default.
- W3206566810 hasConcept C94124525 @default.
- W3206566810 hasConceptScore W3206566810C108583219 @default.
- W3206566810 hasConceptScore W3206566810C119857082 @default.
- W3206566810 hasConceptScore W3206566810C142362112 @default.
- W3206566810 hasConceptScore W3206566810C153349607 @default.
- W3206566810 hasConceptScore W3206566810C154945302 @default.
- W3206566810 hasConceptScore W3206566810C2777946086 @default.
- W3206566810 hasConceptScore W3206566810C28490314 @default.
- W3206566810 hasConceptScore W3206566810C41008148 @default.
- W3206566810 hasConceptScore W3206566810C45273575 @default.
- W3206566810 hasConceptScore W3206566810C50644808 @default.
- W3206566810 hasConceptScore W3206566810C558565934 @default.
- W3206566810 hasConceptScore W3206566810C81363708 @default.
- W3206566810 hasConceptScore W3206566810C94124525 @default.
- W3206566810 hasIssue "5" @default.
- W3206566810 hasLocation W32065668101 @default.
- W3206566810 hasOpenAccess W3206566810 @default.
- W3206566810 hasPrimaryLocation W32065668101 @default.
- W3206566810 hasRelatedWork W2337926734 @default.
- W3206566810 hasRelatedWork W2731899572 @default.
- W3206566810 hasRelatedWork W3019117105 @default.
- W3206566810 hasRelatedWork W3133861977 @default.
- W3206566810 hasRelatedWork W4200173597 @default.
- W3206566810 hasRelatedWork W4311257506 @default.
- W3206566810 hasRelatedWork W4312417841 @default.
- W3206566810 hasRelatedWork W4320802194 @default.
- W3206566810 hasRelatedWork W4321369474 @default.
- W3206566810 hasRelatedWork W4366224123 @default.
- W3206566810 hasVolume "12" @default.
- W3206566810 isParatext "false" @default.
- W3206566810 isRetracted "false" @default.
- W3206566810 magId "3206566810" @default.
- W3206566810 workType "article" @default.