Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206577904> ?p ?o ?g. }
- W3206577904 endingPage "1203" @default.
- W3206577904 startingPage "1154" @default.
- W3206577904 abstract "Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Algorithmic Thresholds for Refuting Random Polynomial SystemsJun-Ting Hsieh and Pravesh K. KothariJun-Ting Hsieh and Pravesh K. Kotharipp.1154 - 1203Chapter DOI:https://doi.org/10.1137/1.9781611977073.49PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract Consider a system of m polynomial equations {pi(x) = bi}i≤m of degree D ≥ 2 in n-dimensional variable x ∊ ℝn such that each coefficient of every pi and bis are chosen at random and independently from some continuous distribution. We study the basic question of determining the smallest m–the algorithmic threshold–for which efficient algorithms can find refutations (i.e. certificates of unsatisfiability) for such systems. This setting generalizes problems such as refuting random SAT instances, low-rank matrix sensing and certifying pseudo-randomness of Goldreich's candidate generators and generalizations. We show that for every d ∊ ℕ, the (n + m)O(d)-time canonical sum-of-squares (SoS) relaxation refutes such a system with high probability whenever . We prove a lower bound in the restricted low-degree polynomial model of computation which suggests that this trade-off between SoS degree and the number of equations is nearly tight for all d. We also confirm the predictions of this lower bound in a limited setting by showing a lower bound on the canonical degree-4 sum-of-squares relaxation for refuting random quadratic polynomials. Together, our results provide evidence for an algorithmic threshold for the problem at -time algorithms for all δ. Our upper-bound relies on establishing a sharp bound on the smallest integer d such that degree d–D polynomial combinations of the input pis generate all degree-d polynomials in the ideal generated by the pis. Our lower bound actually holds for the easier problem of distinguishing random polynomial systems as above from a distribution on polynomial systems with a “planted” solution. Our choice of planted distribution is slightly (and necessarily) subtle: it turns out that the natural and well-studied planted distribution for quadratic systems (studied as the matrix sensing problem in machine learning) is easily distinguishable whenever m ≥ Õ(n)–a factor n smaller than the threshold in our upper bound above. Thus, our setting provides an example where refutation is harder than search in the natural planted model. Previous chapter Next chapter RelatedDetails Published:2022eISBN:978-1-61197-707-3 https://doi.org/10.1137/1.9781611977073Book Series Name:ProceedingsBook Code:PRDA22Book Pages:xvii + 3771" @default.
- W3206577904 created "2021-10-25" @default.
- W3206577904 creator A5042066976 @default.
- W3206577904 creator A5068103506 @default.
- W3206577904 date "2022-01-01" @default.
- W3206577904 modified "2023-09-25" @default.
- W3206577904 title "Algorithmic Thresholds for Refuting Random Polynomial Systems" @default.
- W3206577904 cites W1507263262 @default.
- W3206577904 cites W1590743980 @default.
- W3206577904 cites W1965654736 @default.
- W3206577904 cites W2024090003 @default.
- W3206577904 cites W2025223969 @default.
- W3206577904 cites W2027413053 @default.
- W3206577904 cites W2051634716 @default.
- W3206577904 cites W2057906212 @default.
- W3206577904 cites W2061279083 @default.
- W3206577904 cites W2071318745 @default.
- W3206577904 cites W2077142118 @default.
- W3206577904 cites W2085352155 @default.
- W3206577904 cites W2113600113 @default.
- W3206577904 cites W2118807841 @default.
- W3206577904 cites W2120872934 @default.
- W3206577904 cites W2133404041 @default.
- W3206577904 cites W2138739352 @default.
- W3206577904 cites W2269638945 @default.
- W3206577904 cites W2414682689 @default.
- W3206577904 cites W2592503220 @default.
- W3206577904 cites W2607171573 @default.
- W3206577904 cites W2613226212 @default.
- W3206577904 cites W2620921418 @default.
- W3206577904 cites W2752847244 @default.
- W3206577904 cites W2766337303 @default.
- W3206577904 cites W2767199097 @default.
- W3206577904 cites W2770109286 @default.
- W3206577904 cites W2949121808 @default.
- W3206577904 cites W2962804816 @default.
- W3206577904 cites W2963256102 @default.
- W3206577904 cites W2964738308 @default.
- W3206577904 cites W2965893499 @default.
- W3206577904 cites W3006839531 @default.
- W3206577904 cites W3020162639 @default.
- W3206577904 cites W3034256405 @default.
- W3206577904 cites W3047315550 @default.
- W3206577904 cites W3083750962 @default.
- W3206577904 cites W3084623378 @default.
- W3206577904 cites W3085317570 @default.
- W3206577904 cites W3091400285 @default.
- W3206577904 cites W3093101468 @default.
- W3206577904 cites W3126499933 @default.
- W3206577904 cites W565214016 @default.
- W3206577904 cites W2614022109 @default.
- W3206577904 doi "https://doi.org/10.1137/1.9781611977073.49" @default.
- W3206577904 hasPublicationYear "2022" @default.
- W3206577904 type Work @default.
- W3206577904 sameAs 3206577904 @default.
- W3206577904 citedByCount "2" @default.
- W3206577904 countsByYear W32065779042020 @default.
- W3206577904 countsByYear W32065779042022 @default.
- W3206577904 crossrefType "book-chapter" @default.
- W3206577904 hasAuthorship W3206577904A5042066976 @default.
- W3206577904 hasAuthorship W3206577904A5068103506 @default.
- W3206577904 hasBestOaLocation W32065779042 @default.
- W3206577904 hasConcept C105795698 @default.
- W3206577904 hasConcept C114614502 @default.
- W3206577904 hasConcept C118615104 @default.
- W3206577904 hasConcept C121332964 @default.
- W3206577904 hasConcept C125112378 @default.
- W3206577904 hasConcept C134306372 @default.
- W3206577904 hasConcept C15744967 @default.
- W3206577904 hasConcept C164226766 @default.
- W3206577904 hasConcept C24890656 @default.
- W3206577904 hasConcept C2775997480 @default.
- W3206577904 hasConcept C2776029896 @default.
- W3206577904 hasConcept C311688 @default.
- W3206577904 hasConcept C33923547 @default.
- W3206577904 hasConcept C49847556 @default.
- W3206577904 hasConcept C77553402 @default.
- W3206577904 hasConcept C77805123 @default.
- W3206577904 hasConcept C90119067 @default.
- W3206577904 hasConceptScore W3206577904C105795698 @default.
- W3206577904 hasConceptScore W3206577904C114614502 @default.
- W3206577904 hasConceptScore W3206577904C118615104 @default.
- W3206577904 hasConceptScore W3206577904C121332964 @default.
- W3206577904 hasConceptScore W3206577904C125112378 @default.
- W3206577904 hasConceptScore W3206577904C134306372 @default.
- W3206577904 hasConceptScore W3206577904C15744967 @default.
- W3206577904 hasConceptScore W3206577904C164226766 @default.
- W3206577904 hasConceptScore W3206577904C24890656 @default.
- W3206577904 hasConceptScore W3206577904C2775997480 @default.
- W3206577904 hasConceptScore W3206577904C2776029896 @default.
- W3206577904 hasConceptScore W3206577904C311688 @default.
- W3206577904 hasConceptScore W3206577904C33923547 @default.
- W3206577904 hasConceptScore W3206577904C49847556 @default.
- W3206577904 hasConceptScore W3206577904C77553402 @default.
- W3206577904 hasConceptScore W3206577904C77805123 @default.
- W3206577904 hasConceptScore W3206577904C90119067 @default.
- W3206577904 hasLocation W32065779041 @default.
- W3206577904 hasLocation W32065779042 @default.