Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206586817> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3206586817 abstract "Human activity recognition is an important research field with a variety of applications in healthcare monitoring, fitness tracking and in user-adaptive systems in smart environments. The problem of human activity recognition can be solved using a 1D convolutional neural network (CNN) trained with accelerometric data. The design of an appropriate CNN architecture for solving a particular problem is not an easy task and usually requires considerable specialized knowledge to setup the network hyperparameters based on experimental evaluation. This article proposes an automated approach for CNN architecture optimization that uses genetic algorithms. The suggested approach for evolution of the architecture of 1D CNN is evaluated on two data sets for accelerometer-based human activity recognition and the results show that the GA based CNN design generates CNN architectures with competitive performance compared to the usage of other manually designed CNN models." @default.
- W3206586817 created "2021-10-25" @default.
- W3206586817 creator A5041739830 @default.
- W3206586817 creator A5042271751 @default.
- W3206586817 creator A5066681985 @default.
- W3206586817 date "2021-06-18" @default.
- W3206586817 modified "2023-09-23" @default.
- W3206586817 title "Evolving 1D Convolutional Neural Networks for Human Activity Recognition" @default.
- W3206586817 cites W2002261403 @default.
- W3206586817 cites W2017634428 @default.
- W3206586817 cites W2200813474 @default.
- W3206586817 cites W2219995598 @default.
- W3206586817 cites W2495920728 @default.
- W3206586817 cites W2606006859 @default.
- W3206586817 cites W2657756487 @default.
- W3206586817 cites W2755520760 @default.
- W3206586817 cites W2766669256 @default.
- W3206586817 cites W2795342689 @default.
- W3206586817 cites W2883158673 @default.
- W3206586817 cites W2901708793 @default.
- W3206586817 cites W2952389999 @default.
- W3206586817 cites W2963946985 @default.
- W3206586817 cites W2964016673 @default.
- W3206586817 cites W2965658867 @default.
- W3206586817 cites W3012330071 @default.
- W3206586817 cites W3094704314 @default.
- W3206586817 cites W4255158661 @default.
- W3206586817 doi "https://doi.org/10.1145/3472410.3472413" @default.
- W3206586817 hasPublicationYear "2021" @default.
- W3206586817 type Work @default.
- W3206586817 sameAs 3206586817 @default.
- W3206586817 citedByCount "2" @default.
- W3206586817 countsByYear W32065868172022 @default.
- W3206586817 crossrefType "proceedings-article" @default.
- W3206586817 hasAuthorship W3206586817A5041739830 @default.
- W3206586817 hasAuthorship W3206586817A5042271751 @default.
- W3206586817 hasAuthorship W3206586817A5066681985 @default.
- W3206586817 hasConcept C108583219 @default.
- W3206586817 hasConcept C119857082 @default.
- W3206586817 hasConcept C121687571 @default.
- W3206586817 hasConcept C123657996 @default.
- W3206586817 hasConcept C142362112 @default.
- W3206586817 hasConcept C153180895 @default.
- W3206586817 hasConcept C153349607 @default.
- W3206586817 hasConcept C154945302 @default.
- W3206586817 hasConcept C202444582 @default.
- W3206586817 hasConcept C33923547 @default.
- W3206586817 hasConcept C41008148 @default.
- W3206586817 hasConcept C50644808 @default.
- W3206586817 hasConcept C81363708 @default.
- W3206586817 hasConcept C8642999 @default.
- W3206586817 hasConcept C9652623 @default.
- W3206586817 hasConceptScore W3206586817C108583219 @default.
- W3206586817 hasConceptScore W3206586817C119857082 @default.
- W3206586817 hasConceptScore W3206586817C121687571 @default.
- W3206586817 hasConceptScore W3206586817C123657996 @default.
- W3206586817 hasConceptScore W3206586817C142362112 @default.
- W3206586817 hasConceptScore W3206586817C153180895 @default.
- W3206586817 hasConceptScore W3206586817C153349607 @default.
- W3206586817 hasConceptScore W3206586817C154945302 @default.
- W3206586817 hasConceptScore W3206586817C202444582 @default.
- W3206586817 hasConceptScore W3206586817C33923547 @default.
- W3206586817 hasConceptScore W3206586817C41008148 @default.
- W3206586817 hasConceptScore W3206586817C50644808 @default.
- W3206586817 hasConceptScore W3206586817C81363708 @default.
- W3206586817 hasConceptScore W3206586817C8642999 @default.
- W3206586817 hasConceptScore W3206586817C9652623 @default.
- W3206586817 hasLocation W32065868171 @default.
- W3206586817 hasOpenAccess W3206586817 @default.
- W3206586817 hasPrimaryLocation W32065868171 @default.
- W3206586817 hasRelatedWork W2337926734 @default.
- W3206586817 hasRelatedWork W2732542196 @default.
- W3206586817 hasRelatedWork W2738221750 @default.
- W3206586817 hasRelatedWork W3130227562 @default.
- W3206586817 hasRelatedWork W3156786002 @default.
- W3206586817 hasRelatedWork W3206248117 @default.
- W3206586817 hasRelatedWork W4304182771 @default.
- W3206586817 hasRelatedWork W4311257506 @default.
- W3206586817 hasRelatedWork W4312831135 @default.
- W3206586817 hasRelatedWork W564581980 @default.
- W3206586817 isParatext "false" @default.
- W3206586817 isRetracted "false" @default.
- W3206586817 magId "3206586817" @default.
- W3206586817 workType "article" @default.