Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206597961> ?p ?o ?g. }
- W3206597961 endingPage "109" @default.
- W3206597961 startingPage "84" @default.
- W3206597961 abstract "Finger vein recognition biometric trait is a significant biometric modality that is considered more secure, reliable, and emerging. This article presents a review to focus on the recent research landscape in biometric finger vein recognition systems. This article focuses on manuscripts related to keywords ‘Finger Vein Authentication System’, ‘Anti-spoofing or Presentation Attack Detection’, ‘Multimodal Biometric Finger Vein Authentication’ and their variations in four main digital research libraries such as IEEE Xplore, Springer, ACM, and Science Direct. The final set of articles is divided into three main categories: Deep Learning (DL) based finger vein recognition, Presentation Attack Detection (PAD), and Multimodal-based finger vein authentication system. Deep learning-based finger vein recognition techniques are further sub-divided into pre-processing (Quality assessment and enhancement) based, feature extraction based, and feature extraction and recognition based schemes. Presentation attack detection methods are sub-divided into software-based and hardware-based approaches. Multimodal-based finger vein biometric system is sub-categorized into feature level fusion, matching level fusion, and hybrid fusion methods. The authors have studied the problem of the recent algorithm and their solution related to finger vein biometric system from the recent literature. Performance analysis and selected the best promising research work from the mentioned studies are also presented. Finally, open challenges, opportunities, and suggested solutions related to deep learning, PAD, and Multimodal based finger vein recognition systems have been discussed in the discussion section. This work would be helpful to the developers, company users, researchers, and readers to get insight into the importance of such technology and the recent problem faced by finger vein authentication technology with respect to deep learning and multimodal systems." @default.
- W3206597961 created "2021-10-25" @default.
- W3206597961 creator A5014555076 @default.
- W3206597961 creator A5023256790 @default.
- W3206597961 creator A5039450572 @default.
- W3206597961 creator A5052689516 @default.
- W3206597961 creator A5055589318 @default.
- W3206597961 creator A5073527453 @default.
- W3206597961 date "2022-03-01" @default.
- W3206597961 modified "2023-10-07" @default.
- W3206597961 title "Recent advancements in finger vein recognition technology: Methodology, challenges and opportunities" @default.
- W3206597961 cites W1962124124 @default.
- W3206597961 cites W1965947362 @default.
- W3206597961 cites W2017503877 @default.
- W3206597961 cites W2018604261 @default.
- W3206597961 cites W2044321590 @default.
- W3206597961 cites W2050484918 @default.
- W3206597961 cites W2266314273 @default.
- W3206597961 cites W2284457152 @default.
- W3206597961 cites W2328254514 @default.
- W3206597961 cites W2469077056 @default.
- W3206597961 cites W2473819351 @default.
- W3206597961 cites W2519498248 @default.
- W3206597961 cites W2566696002 @default.
- W3206597961 cites W2569747121 @default.
- W3206597961 cites W2575448570 @default.
- W3206597961 cites W2587475465 @default.
- W3206597961 cites W2599632008 @default.
- W3206597961 cites W2600360414 @default.
- W3206597961 cites W2602244503 @default.
- W3206597961 cites W2602670757 @default.
- W3206597961 cites W2606842801 @default.
- W3206597961 cites W2730947821 @default.
- W3206597961 cites W2757518998 @default.
- W3206597961 cites W2758913579 @default.
- W3206597961 cites W2762129651 @default.
- W3206597961 cites W2786140894 @default.
- W3206597961 cites W2788513268 @default.
- W3206597961 cites W2791311407 @default.
- W3206597961 cites W2793410607 @default.
- W3206597961 cites W2807722360 @default.
- W3206597961 cites W2811014381 @default.
- W3206597961 cites W2884367402 @default.
- W3206597961 cites W2886867536 @default.
- W3206597961 cites W2888522463 @default.
- W3206597961 cites W2889277133 @default.
- W3206597961 cites W2892027532 @default.
- W3206597961 cites W2893920965 @default.
- W3206597961 cites W2897343424 @default.
- W3206597961 cites W2898783079 @default.
- W3206597961 cites W2898978534 @default.
- W3206597961 cites W2899070239 @default.
- W3206597961 cites W2904751442 @default.
- W3206597961 cites W2905839779 @default.
- W3206597961 cites W2907847267 @default.
- W3206597961 cites W2912487318 @default.
- W3206597961 cites W2915993123 @default.
- W3206597961 cites W2917098117 @default.
- W3206597961 cites W2919938126 @default.
- W3206597961 cites W2920205288 @default.
- W3206597961 cites W2921209596 @default.
- W3206597961 cites W2922535961 @default.
- W3206597961 cites W2943255452 @default.
- W3206597961 cites W2945197573 @default.
- W3206597961 cites W2948212638 @default.
- W3206597961 cites W2973586701 @default.
- W3206597961 cites W2979603993 @default.
- W3206597961 cites W2990259164 @default.
- W3206597961 cites W2995476470 @default.
- W3206597961 cites W2996162755 @default.
- W3206597961 cites W2999666246 @default.
- W3206597961 cites W3002790398 @default.
- W3206597961 cites W3004478798 @default.
- W3206597961 cites W3005370840 @default.
- W3206597961 cites W3011063819 @default.
- W3206597961 cites W3014462183 @default.
- W3206597961 cites W3016770847 @default.
- W3206597961 cites W3023310072 @default.
- W3206597961 cites W3026124983 @default.
- W3206597961 cites W3026918854 @default.
- W3206597961 cites W3034256998 @default.
- W3206597961 cites W3042796486 @default.
- W3206597961 cites W3047829320 @default.
- W3206597961 cites W3082332387 @default.
- W3206597961 cites W3089427171 @default.
- W3206597961 cites W3092872579 @default.
- W3206597961 cites W3114640772 @default.
- W3206597961 cites W3134449933 @default.
- W3206597961 cites W3135772684 @default.
- W3206597961 cites W3215094339 @default.
- W3206597961 cites W3135120642 @default.
- W3206597961 doi "https://doi.org/10.1016/j.inffus.2021.10.004" @default.
- W3206597961 hasPublicationYear "2022" @default.
- W3206597961 type Work @default.
- W3206597961 sameAs 3206597961 @default.
- W3206597961 citedByCount "39" @default.
- W3206597961 countsByYear W32065979612022 @default.
- W3206597961 countsByYear W32065979612023 @default.