Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206607069> ?p ?o ?g. }
- W3206607069 endingPage "e0258855" @default.
- W3206607069 startingPage "e0258855" @default.
- W3206607069 abstract "Convolutional neural networks (CNNs) are the state-of-the-art for automated assessment of knee osteoarthritis (KOA) from medical image data. However, these methods lack interpretability, mainly focus on image texture, and cannot completely grasp the analyzed anatomies' shapes. In this study we assess the informative value of quantitative features derived from segmentations in order to assess their potential as an alternative or extension to CNN-based approaches regarding multiple aspects of KOA. Six anatomical structures around the knee (femoral and tibial bones, femoral and tibial cartilages, and both menisci) are segmented in 46,996 MRI scans. Based on these segmentations, quantitative features are computed, i.e., measurements such as cartilage volume, meniscal extrusion and tibial coverage, as well as geometric features based on a statistical shape encoding of the anatomies. The feature quality is assessed by investigating their association to the Kellgren-Lawrence grade (KLG), joint space narrowing (JSN), incident KOA, and total knee replacement (TKR). Using gold standard labels from the Osteoarthritis Initiative database the balanced accuracy (BA), the area under the Receiver Operating Characteristic curve (AUC), and weighted kappa statistics are evaluated. Features based on shape encodings of femur, tibia, and menisci plus the performed measurements showed most potential as KOA biomarkers. Differentiation between non-arthritic and severely arthritic knees yielded BAs of up to 99%, 84% were achieved for diagnosis of early KOA. Weighted kappa values of 0.73, 0.72, and 0.78 were achieved for classification of the grade of medial JSN, lateral JSN, and KLG, respectively. The AUC was 0.61 and 0.76 for prediction of incident KOA and TKR within one year, respectively. Quantitative features from automated segmentations provide novel biomarkers for KLG and JSN classification and show potential for incident KOA and TKR prediction. The validity of these features should be further evaluated, especially as extensions of CNN-based approaches. To foster such developments we make all segmentations publicly available together with this publication." @default.
- W3206607069 created "2021-10-25" @default.
- W3206607069 creator A5037457995 @default.
- W3206607069 creator A5045288907 @default.
- W3206607069 creator A5087268805 @default.
- W3206607069 date "2021-10-21" @default.
- W3206607069 modified "2023-10-18" @default.
- W3206607069 title "Towards novel osteoarthritis biomarkers: Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative" @default.
- W3206607069 cites W1147837667 @default.
- W3206607069 cites W1828697965 @default.
- W3206607069 cites W1967057044 @default.
- W3206607069 cites W1969977416 @default.
- W3206607069 cites W1978598945 @default.
- W3206607069 cites W1990326111 @default.
- W3206607069 cites W1991958177 @default.
- W3206607069 cites W2017022352 @default.
- W3206607069 cites W2018483142 @default.
- W3206607069 cites W2053691787 @default.
- W3206607069 cites W2060863323 @default.
- W3206607069 cites W2071874352 @default.
- W3206607069 cites W2073887351 @default.
- W3206607069 cites W2083800250 @default.
- W3206607069 cites W2123377713 @default.
- W3206607069 cites W2125949583 @default.
- W3206607069 cites W2136355014 @default.
- W3206607069 cites W2148218555 @default.
- W3206607069 cites W2159624824 @default.
- W3206607069 cites W2164777277 @default.
- W3206607069 cites W2477002236 @default.
- W3206607069 cites W2610332124 @default.
- W3206607069 cites W2754956103 @default.
- W3206607069 cites W2790091880 @default.
- W3206607069 cites W2794990008 @default.
- W3206607069 cites W2803537647 @default.
- W3206607069 cites W2885303411 @default.
- W3206607069 cites W2897451575 @default.
- W3206607069 cites W2897453080 @default.
- W3206607069 cites W2902874468 @default.
- W3206607069 cites W2956762902 @default.
- W3206607069 cites W2963202012 @default.
- W3206607069 cites W2990070310 @default.
- W3206607069 cites W2998512002 @default.
- W3206607069 cites W3011530750 @default.
- W3206607069 cites W3015522225 @default.
- W3206607069 cites W3016150169 @default.
- W3206607069 cites W3021286010 @default.
- W3206607069 cites W3058910814 @default.
- W3206607069 cites W3101004220 @default.
- W3206607069 cites W3184078025 @default.
- W3206607069 doi "https://doi.org/10.1371/journal.pone.0258855" @default.
- W3206607069 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8530341" @default.
- W3206607069 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34673842" @default.
- W3206607069 hasPublicationYear "2021" @default.
- W3206607069 type Work @default.
- W3206607069 sameAs 3206607069 @default.
- W3206607069 citedByCount "3" @default.
- W3206607069 countsByYear W32066070692022 @default.
- W3206607069 countsByYear W32066070692023 @default.
- W3206607069 crossrefType "journal-article" @default.
- W3206607069 hasAuthorship W3206607069A5037457995 @default.
- W3206607069 hasAuthorship W3206607069A5045288907 @default.
- W3206607069 hasAuthorship W3206607069A5087268805 @default.
- W3206607069 hasBestOaLocation W32066070691 @default.
- W3206607069 hasConcept C105702510 @default.
- W3206607069 hasConcept C126322002 @default.
- W3206607069 hasConcept C126838900 @default.
- W3206607069 hasConcept C141071460 @default.
- W3206607069 hasConcept C142724271 @default.
- W3206607069 hasConcept C143409427 @default.
- W3206607069 hasConcept C153180895 @default.
- W3206607069 hasConcept C154945302 @default.
- W3206607069 hasConcept C204787440 @default.
- W3206607069 hasConcept C2524010 @default.
- W3206607069 hasConcept C2776164576 @default.
- W3206607069 hasConcept C2777236700 @default.
- W3206607069 hasConcept C2778724333 @default.
- W3206607069 hasConcept C2779279471 @default.
- W3206607069 hasConcept C2780550940 @default.
- W3206607069 hasConcept C2780554211 @default.
- W3206607069 hasConcept C29694066 @default.
- W3206607069 hasConcept C33923547 @default.
- W3206607069 hasConcept C41008148 @default.
- W3206607069 hasConcept C58471807 @default.
- W3206607069 hasConcept C71924100 @default.
- W3206607069 hasConcept C89600930 @default.
- W3206607069 hasConceptScore W3206607069C105702510 @default.
- W3206607069 hasConceptScore W3206607069C126322002 @default.
- W3206607069 hasConceptScore W3206607069C126838900 @default.
- W3206607069 hasConceptScore W3206607069C141071460 @default.
- W3206607069 hasConceptScore W3206607069C142724271 @default.
- W3206607069 hasConceptScore W3206607069C143409427 @default.
- W3206607069 hasConceptScore W3206607069C153180895 @default.
- W3206607069 hasConceptScore W3206607069C154945302 @default.
- W3206607069 hasConceptScore W3206607069C204787440 @default.
- W3206607069 hasConceptScore W3206607069C2524010 @default.
- W3206607069 hasConceptScore W3206607069C2776164576 @default.
- W3206607069 hasConceptScore W3206607069C2777236700 @default.
- W3206607069 hasConceptScore W3206607069C2778724333 @default.