Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206680238> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3206680238 abstract "Abstract The nuclear power industry is increasingly identifying applications of machine learning to reduce design, engineering, manufacturing, and operational costs. In some cases, applications have been deployed and are realizing value, in particular in the higher volume and data rich manufacturing areas of the nuclear industry. In this paper, we use machine learning to develop metamodel approximations of a computationally intense safety analysis code used to simulate a postulated loss-of-coolant accident (LOCA). The benefit of an accurate metamodel is that it runs at a fraction of the computational cost (milliseconds) compared to the LOCA analysis code. Metamodels can therefore support applications requiring a high volume of runs, for example optimization, uncertainty analysis, and probabilistic decision analysis, which would otherwise not be possible using the computationally intense code. We first generate training data by running the safety analysis code over a design of experiment. We then perform exploratory data analysis and an initial fitting of several model forms, including neighbor-based models, tree-based models, support vector machines, and artificial neural networks. We select neural network as the most promising candidate and perform hyperparameter optimization using a genetic algorithm. We discuss the resulting model, its potential applications, and areas for further research." @default.
- W3206680238 created "2021-10-25" @default.
- W3206680238 creator A5028111908 @default.
- W3206680238 creator A5053569009 @default.
- W3206680238 creator A5054052510 @default.
- W3206680238 creator A5083671204 @default.
- W3206680238 date "2021-08-04" @default.
- W3206680238 modified "2023-09-26" @default.
- W3206680238 title "Machine Learned Metamodeling of a Computationally Intensive Accident Simulation Code" @default.
- W3206680238 doi "https://doi.org/10.1115/icone28-66619" @default.
- W3206680238 hasPublicationYear "2021" @default.
- W3206680238 type Work @default.
- W3206680238 sameAs 3206680238 @default.
- W3206680238 citedByCount "0" @default.
- W3206680238 crossrefType "proceedings-article" @default.
- W3206680238 hasAuthorship W3206680238A5028111908 @default.
- W3206680238 hasAuthorship W3206680238A5053569009 @default.
- W3206680238 hasAuthorship W3206680238A5054052510 @default.
- W3206680238 hasAuthorship W3206680238A5083671204 @default.
- W3206680238 hasConcept C119857082 @default.
- W3206680238 hasConcept C12267149 @default.
- W3206680238 hasConcept C124101348 @default.
- W3206680238 hasConcept C127413603 @default.
- W3206680238 hasConcept C154945302 @default.
- W3206680238 hasConcept C177264268 @default.
- W3206680238 hasConcept C199360897 @default.
- W3206680238 hasConcept C2776760102 @default.
- W3206680238 hasConcept C2778917722 @default.
- W3206680238 hasConcept C41008148 @default.
- W3206680238 hasConcept C50644808 @default.
- W3206680238 hasConcept C78519656 @default.
- W3206680238 hasConcept C84525736 @default.
- W3206680238 hasConcept C8642999 @default.
- W3206680238 hasConcept C86610423 @default.
- W3206680238 hasConcept C91914117 @default.
- W3206680238 hasConceptScore W3206680238C119857082 @default.
- W3206680238 hasConceptScore W3206680238C12267149 @default.
- W3206680238 hasConceptScore W3206680238C124101348 @default.
- W3206680238 hasConceptScore W3206680238C127413603 @default.
- W3206680238 hasConceptScore W3206680238C154945302 @default.
- W3206680238 hasConceptScore W3206680238C177264268 @default.
- W3206680238 hasConceptScore W3206680238C199360897 @default.
- W3206680238 hasConceptScore W3206680238C2776760102 @default.
- W3206680238 hasConceptScore W3206680238C2778917722 @default.
- W3206680238 hasConceptScore W3206680238C41008148 @default.
- W3206680238 hasConceptScore W3206680238C50644808 @default.
- W3206680238 hasConceptScore W3206680238C78519656 @default.
- W3206680238 hasConceptScore W3206680238C84525736 @default.
- W3206680238 hasConceptScore W3206680238C8642999 @default.
- W3206680238 hasConceptScore W3206680238C86610423 @default.
- W3206680238 hasConceptScore W3206680238C91914117 @default.
- W3206680238 hasLocation W32066802381 @default.
- W3206680238 hasOpenAccess W3206680238 @default.
- W3206680238 hasPrimaryLocation W32066802381 @default.
- W3206680238 hasRelatedWork W10147339 @default.
- W3206680238 hasRelatedWork W10718265 @default.
- W3206680238 hasRelatedWork W11920092 @default.
- W3206680238 hasRelatedWork W12785170 @default.
- W3206680238 hasRelatedWork W13683310 @default.
- W3206680238 hasRelatedWork W14760143 @default.
- W3206680238 hasRelatedWork W1482794 @default.
- W3206680238 hasRelatedWork W1713610 @default.
- W3206680238 hasRelatedWork W2930648 @default.
- W3206680238 hasRelatedWork W5257913 @default.
- W3206680238 isParatext "false" @default.
- W3206680238 isRetracted "false" @default.
- W3206680238 magId "3206680238" @default.
- W3206680238 workType "article" @default.