Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206737239> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3206737239 abstract "Let $alpha'$ and $mu_i$ denote the matching number of a non-empty simple graph $G$ with $n$ vertices and the $i$-th smallest eigenvalue of its Laplacian matrix, respectively. In this paper, we prove a tight lower bound $$alpha' ge minleft{Biglceilfrac{mu_2}{mu_n} (n -1)Bigrceil, Biglceilfrac{1}{2}(n-1)Bigrceil right}.$$ This bound strengthens the result of Brouwer and Haemers who proved that if $n$ is even and $2mu_2 ge mu_n$, then $G$ has a perfect matching. A graph $G$ is factor-critical if for every vertex $vin V(G)$, $G-v$ has a perfect matching. We also prove an analogue to the result of Brouwer and Haemers mentioned above by showing that if $n$ is odd and $2mu_2 ge mu_n$, then $G$ is factor-critical. We use the separation inequality of Haemers to get a useful lemma, which is the key idea in the proofs. This lemma is of its own interest and has other applications. In particular, we prove similar results for the number of balloons, spanning even subgraphs, as well as spanning trees with bounded degree." @default.
- W3206737239 created "2021-10-25" @default.
- W3206737239 creator A5065142289 @default.
- W3206737239 creator A5076229821 @default.
- W3206737239 date "2021-10-18" @default.
- W3206737239 modified "2023-09-27" @default.
- W3206737239 title "A tight lower bound on the matching number of graphs via Laplacian eigenvalues." @default.
- W3206737239 cites W1639593279 @default.
- W3206737239 cites W1738057999 @default.
- W3206737239 cites W1985061810 @default.
- W3206737239 cites W1986224428 @default.
- W3206737239 cites W1996640753 @default.
- W3206737239 cites W2000252962 @default.
- W3206737239 cites W2009946412 @default.
- W3206737239 cites W2035633339 @default.
- W3206737239 cites W2042269609 @default.
- W3206737239 cites W2046706140 @default.
- W3206737239 cites W2049641124 @default.
- W3206737239 cites W2060493211 @default.
- W3206737239 cites W2117400811 @default.
- W3206737239 cites W2126719431 @default.
- W3206737239 cites W2150809110 @default.
- W3206737239 cites W2154936094 @default.
- W3206737239 cites W2169185710 @default.
- W3206737239 cites W2477320853 @default.
- W3206737239 cites W2963232981 @default.
- W3206737239 cites W2964138348 @default.
- W3206737239 cites W3034097073 @default.
- W3206737239 hasPublicationYear "2021" @default.
- W3206737239 type Work @default.
- W3206737239 sameAs 3206737239 @default.
- W3206737239 citedByCount "0" @default.
- W3206737239 crossrefType "posted-content" @default.
- W3206737239 hasAuthorship W3206737239A5065142289 @default.
- W3206737239 hasAuthorship W3206737239A5076229821 @default.
- W3206737239 hasConcept C105795698 @default.
- W3206737239 hasConcept C114614502 @default.
- W3206737239 hasConcept C115178988 @default.
- W3206737239 hasConcept C118615104 @default.
- W3206737239 hasConcept C121332964 @default.
- W3206737239 hasConcept C132525143 @default.
- W3206737239 hasConcept C134306372 @default.
- W3206737239 hasConcept C158693339 @default.
- W3206737239 hasConcept C165064840 @default.
- W3206737239 hasConcept C18903297 @default.
- W3206737239 hasConcept C2777759810 @default.
- W3206737239 hasConcept C33923547 @default.
- W3206737239 hasConcept C34388435 @default.
- W3206737239 hasConcept C46757340 @default.
- W3206737239 hasConcept C62520636 @default.
- W3206737239 hasConcept C77553402 @default.
- W3206737239 hasConcept C80899671 @default.
- W3206737239 hasConcept C86803240 @default.
- W3206737239 hasConceptScore W3206737239C105795698 @default.
- W3206737239 hasConceptScore W3206737239C114614502 @default.
- W3206737239 hasConceptScore W3206737239C115178988 @default.
- W3206737239 hasConceptScore W3206737239C118615104 @default.
- W3206737239 hasConceptScore W3206737239C121332964 @default.
- W3206737239 hasConceptScore W3206737239C132525143 @default.
- W3206737239 hasConceptScore W3206737239C134306372 @default.
- W3206737239 hasConceptScore W3206737239C158693339 @default.
- W3206737239 hasConceptScore W3206737239C165064840 @default.
- W3206737239 hasConceptScore W3206737239C18903297 @default.
- W3206737239 hasConceptScore W3206737239C2777759810 @default.
- W3206737239 hasConceptScore W3206737239C33923547 @default.
- W3206737239 hasConceptScore W3206737239C34388435 @default.
- W3206737239 hasConceptScore W3206737239C46757340 @default.
- W3206737239 hasConceptScore W3206737239C62520636 @default.
- W3206737239 hasConceptScore W3206737239C77553402 @default.
- W3206737239 hasConceptScore W3206737239C80899671 @default.
- W3206737239 hasConceptScore W3206737239C86803240 @default.
- W3206737239 hasLocation W32067372391 @default.
- W3206737239 hasOpenAccess W3206737239 @default.
- W3206737239 hasPrimaryLocation W32067372391 @default.
- W3206737239 hasRelatedWork W2003412346 @default.
- W3206737239 hasRelatedWork W2058246733 @default.
- W3206737239 hasRelatedWork W2093082792 @default.
- W3206737239 hasRelatedWork W2095782459 @default.
- W3206737239 hasRelatedWork W2130270608 @default.
- W3206737239 hasRelatedWork W2281219482 @default.
- W3206737239 hasRelatedWork W2311250512 @default.
- W3206737239 hasRelatedWork W2348776509 @default.
- W3206737239 hasRelatedWork W2734867592 @default.
- W3206737239 hasRelatedWork W2775066924 @default.
- W3206737239 hasRelatedWork W2803355438 @default.
- W3206737239 hasRelatedWork W2887156743 @default.
- W3206737239 hasRelatedWork W2949126241 @default.
- W3206737239 hasRelatedWork W2952277897 @default.
- W3206737239 hasRelatedWork W2962992640 @default.
- W3206737239 hasRelatedWork W2963340133 @default.
- W3206737239 hasRelatedWork W3010444613 @default.
- W3206737239 hasRelatedWork W3127690597 @default.
- W3206737239 hasRelatedWork W3153466127 @default.
- W3206737239 hasRelatedWork W3184725411 @default.
- W3206737239 isParatext "false" @default.
- W3206737239 isRetracted "false" @default.
- W3206737239 magId "3206737239" @default.
- W3206737239 workType "article" @default.