Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206784242> ?p ?o ?g. }
- W3206784242 endingPage "297" @default.
- W3206784242 startingPage "297" @default.
- W3206784242 abstract "Cyber security is used to protect and safeguard computers and various networks from ill-intended digital threats and attacks. It is getting more difficult in the information age due to the explosion of data and technology. There is a drastic rise in the new types of attacks where the conventional signature-based systems cannot keep up with these attacks. Machine learning seems to be a solution to solve many problems, including problems in cyber security. It is proven to be a very useful tool in the evolution of malware detection systems. However, the security of AI-based malware detection models is fragile. With advancements in machine learning, attackers have found a way to work around such detection systems using an adversarial attack technique. Such attacks are targeted at the data level, at classifier models, and during the testing phase. These attacks tend to cause the classifier to misclassify the given input, which can be very harmful in real-time AI-based malware detection. This paper proposes a framework for generating the adversarial malware images and retraining the classification models to improve malware detection robustness. Different classification models were implemented for malware detection, and attacks were established using adversarial images to analyze the model’s behavior. The robustness of the models was improved by means of adversarial training, and better attack resistance is observed." @default.
- W3206784242 created "2021-10-25" @default.
- W3206784242 creator A5012498520 @default.
- W3206784242 creator A5025236262 @default.
- W3206784242 creator A5057196777 @default.
- W3206784242 creator A5061724484 @default.
- W3206784242 creator A5071299094 @default.
- W3206784242 creator A5077770842 @default.
- W3206784242 creator A5079751727 @default.
- W3206784242 date "2021-10-15" @default.
- W3206784242 modified "2023-09-26" @default.
- W3206784242 title "Improving the Robustness of AI-Based Malware Detection Using Adversarial Machine Learning" @default.
- W3206784242 cites W1974314988 @default.
- W3206784242 cites W1996975221 @default.
- W3206784242 cites W2063898900 @default.
- W3206784242 cites W2252815174 @default.
- W3206784242 cites W2528572867 @default.
- W3206784242 cites W2574797807 @default.
- W3206784242 cites W2732916693 @default.
- W3206784242 cites W2736972628 @default.
- W3206784242 cites W2744095836 @default.
- W3206784242 cites W2765921396 @default.
- W3206784242 cites W2768729901 @default.
- W3206784242 cites W2769312722 @default.
- W3206784242 cites W2772683029 @default.
- W3206784242 cites W2775173651 @default.
- W3206784242 cites W2780061022 @default.
- W3206784242 cites W2784097977 @default.
- W3206784242 cites W2789539257 @default.
- W3206784242 cites W2799784398 @default.
- W3206784242 cites W2804769055 @default.
- W3206784242 cites W2808649067 @default.
- W3206784242 cites W2894746673 @default.
- W3206784242 cites W2900631219 @default.
- W3206784242 cites W2900633536 @default.
- W3206784242 cites W2902285385 @default.
- W3206784242 cites W2921625035 @default.
- W3206784242 cites W2922440217 @default.
- W3206784242 cites W2928663913 @default.
- W3206784242 cites W2929803724 @default.
- W3206784242 cites W2944012984 @default.
- W3206784242 cites W2963461515 @default.
- W3206784242 cites W2971236179 @default.
- W3206784242 cites W2976459024 @default.
- W3206784242 cites W2997532515 @default.
- W3206784242 cites W2998074434 @default.
- W3206784242 cites W3006325478 @default.
- W3206784242 cites W3007481080 @default.
- W3206784242 cites W3008497156 @default.
- W3206784242 cites W3020273542 @default.
- W3206784242 cites W3024340288 @default.
- W3206784242 cites W3025397287 @default.
- W3206784242 cites W3036035276 @default.
- W3206784242 cites W3044817893 @default.
- W3206784242 cites W3082841960 @default.
- W3206784242 cites W3087845614 @default.
- W3206784242 cites W3118382796 @default.
- W3206784242 cites W3129906305 @default.
- W3206784242 cites W3133233862 @default.
- W3206784242 cites W3167041328 @default.
- W3206784242 cites W3167156097 @default.
- W3206784242 cites W34492510 @default.
- W3206784242 cites W4231165473 @default.
- W3206784242 cites W4233406110 @default.
- W3206784242 cites W9657784 @default.
- W3206784242 doi "https://doi.org/10.3390/a14100297" @default.
- W3206784242 hasPublicationYear "2021" @default.
- W3206784242 type Work @default.
- W3206784242 sameAs 3206784242 @default.
- W3206784242 citedByCount "6" @default.
- W3206784242 countsByYear W32067842422022 @default.
- W3206784242 countsByYear W32067842422023 @default.
- W3206784242 crossrefType "journal-article" @default.
- W3206784242 hasAuthorship W3206784242A5012498520 @default.
- W3206784242 hasAuthorship W3206784242A5025236262 @default.
- W3206784242 hasAuthorship W3206784242A5057196777 @default.
- W3206784242 hasAuthorship W3206784242A5061724484 @default.
- W3206784242 hasAuthorship W3206784242A5071299094 @default.
- W3206784242 hasAuthorship W3206784242A5077770842 @default.
- W3206784242 hasAuthorship W3206784242A5079751727 @default.
- W3206784242 hasBestOaLocation W32067842421 @default.
- W3206784242 hasConcept C104317684 @default.
- W3206784242 hasConcept C119857082 @default.
- W3206784242 hasConcept C124101348 @default.
- W3206784242 hasConcept C154945302 @default.
- W3206784242 hasConcept C185592680 @default.
- W3206784242 hasConcept C2778403875 @default.
- W3206784242 hasConcept C35525427 @default.
- W3206784242 hasConcept C37736160 @default.
- W3206784242 hasConcept C38652104 @default.
- W3206784242 hasConcept C41008148 @default.
- W3206784242 hasConcept C541664917 @default.
- W3206784242 hasConcept C55493867 @default.
- W3206784242 hasConcept C63479239 @default.
- W3206784242 hasConcept C95623464 @default.
- W3206784242 hasConceptScore W3206784242C104317684 @default.
- W3206784242 hasConceptScore W3206784242C119857082 @default.
- W3206784242 hasConceptScore W3206784242C124101348 @default.