Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206799963> ?p ?o ?g. }
- W3206799963 endingPage "2734" @default.
- W3206799963 startingPage "2734" @default.
- W3206799963 abstract "The adsorption of dyes using 39 adsorbents (16 kinds of agro-wastes) were modeled using random forest (RF), decision tree (DT), and gradient boosting (GB) models based on 350 sets of adsorption experimental data. In addition, the correlation between variables and their importance was applied. After comprehensive feature selection analysis, five important variables were selected from nine variables. The RF with the highest accuracy (R2 = 0.9) was selected as the best model for prediction of adsorption capacity of agro-waste using the five selected variables. The results suggested that agro-waste characteristics (pore volume, surface area, agro-waste pH, and particle size) accounted for 50.7% contribution for adsorption efficiency. The pore volume and surface area are the most important influencing variables among the agro-waste characteristics, while the role of particle size was inconspicuous. The accurate ability of the developed models' prediction could significantly reduce experimental screening efforts, such as predicting the dye removal efficiency of agro-waste activated carbon according to agro-waste characteristics. The relative importance of variables could provide a right direction for better treatments of dyes in the real wastewater." @default.
- W3206799963 created "2021-10-25" @default.
- W3206799963 creator A5018800914 @default.
- W3206799963 creator A5029616052 @default.
- W3206799963 creator A5032759295 @default.
- W3206799963 creator A5045303443 @default.
- W3206799963 creator A5059211201 @default.
- W3206799963 creator A5082033277 @default.
- W3206799963 creator A5085537150 @default.
- W3206799963 creator A5091285252 @default.
- W3206799963 date "2021-10-15" @default.
- W3206799963 modified "2023-10-07" @default.
- W3206799963 title "A Study on Machine Learning Methods’ Application for Dye Adsorption Prediction onto Agricultural Waste Activated Carbon" @default.
- W3206799963 cites W1967379861 @default.
- W3206799963 cites W1977475394 @default.
- W3206799963 cites W1983878125 @default.
- W3206799963 cites W1988809803 @default.
- W3206799963 cites W2010302600 @default.
- W3206799963 cites W2025437431 @default.
- W3206799963 cites W2037160858 @default.
- W3206799963 cites W2053546343 @default.
- W3206799963 cites W2057864233 @default.
- W3206799963 cites W2076848074 @default.
- W3206799963 cites W2102446210 @default.
- W3206799963 cites W2125283600 @default.
- W3206799963 cites W2191656446 @default.
- W3206799963 cites W2274708882 @default.
- W3206799963 cites W2301698558 @default.
- W3206799963 cites W2517277037 @default.
- W3206799963 cites W2558322041 @default.
- W3206799963 cites W2570855767 @default.
- W3206799963 cites W2582594503 @default.
- W3206799963 cites W2588410713 @default.
- W3206799963 cites W2594876042 @default.
- W3206799963 cites W2605614336 @default.
- W3206799963 cites W2610886376 @default.
- W3206799963 cites W2742382433 @default.
- W3206799963 cites W2742747848 @default.
- W3206799963 cites W2782330252 @default.
- W3206799963 cites W2789751646 @default.
- W3206799963 cites W2791655175 @default.
- W3206799963 cites W2802458535 @default.
- W3206799963 cites W2893818424 @default.
- W3206799963 cites W2905197144 @default.
- W3206799963 cites W2911347083 @default.
- W3206799963 cites W2925974761 @default.
- W3206799963 cites W2939193816 @default.
- W3206799963 cites W2949006411 @default.
- W3206799963 cites W2967998378 @default.
- W3206799963 cites W2969240359 @default.
- W3206799963 cites W2973353846 @default.
- W3206799963 cites W2980182901 @default.
- W3206799963 cites W2987293703 @default.
- W3206799963 cites W2995212177 @default.
- W3206799963 cites W2997272966 @default.
- W3206799963 cites W3013441236 @default.
- W3206799963 cites W3048395545 @default.
- W3206799963 cites W3081529317 @default.
- W3206799963 cites W3083047297 @default.
- W3206799963 cites W3097005139 @default.
- W3206799963 cites W3110225549 @default.
- W3206799963 cites W3110845903 @default.
- W3206799963 cites W3112655260 @default.
- W3206799963 cites W3160193361 @default.
- W3206799963 cites W4248000332 @default.
- W3206799963 doi "https://doi.org/10.3390/nano11102734" @default.
- W3206799963 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8540925" @default.
- W3206799963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34685171" @default.
- W3206799963 hasPublicationYear "2021" @default.
- W3206799963 type Work @default.
- W3206799963 sameAs 3206799963 @default.
- W3206799963 citedByCount "16" @default.
- W3206799963 countsByYear W32067999632022 @default.
- W3206799963 countsByYear W32067999632023 @default.
- W3206799963 crossrefType "journal-article" @default.
- W3206799963 hasAuthorship W3206799963A5018800914 @default.
- W3206799963 hasAuthorship W3206799963A5029616052 @default.
- W3206799963 hasAuthorship W3206799963A5032759295 @default.
- W3206799963 hasAuthorship W3206799963A5045303443 @default.
- W3206799963 hasAuthorship W3206799963A5059211201 @default.
- W3206799963 hasAuthorship W3206799963A5082033277 @default.
- W3206799963 hasAuthorship W3206799963A5085537150 @default.
- W3206799963 hasAuthorship W3206799963A5091285252 @default.
- W3206799963 hasBestOaLocation W32067999631 @default.
- W3206799963 hasConcept C119857082 @default.
- W3206799963 hasConcept C121332964 @default.
- W3206799963 hasConcept C127413603 @default.
- W3206799963 hasConcept C150077022 @default.
- W3206799963 hasConcept C150394285 @default.
- W3206799963 hasConcept C169258074 @default.
- W3206799963 hasConcept C178790620 @default.
- W3206799963 hasConcept C185592680 @default.
- W3206799963 hasConcept C187530423 @default.
- W3206799963 hasConcept C192562407 @default.
- W3206799963 hasConcept C20556612 @default.
- W3206799963 hasConcept C2779647737 @default.
- W3206799963 hasConcept C2993426478 @default.
- W3206799963 hasConcept C39432304 @default.