Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206838923> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3206838923 abstract "Automatic object detection in overhead imagery is greatly increasing the pace at which we learn about anthropic activity across diverse fields such as economics, environmental management, and engineering. Properly-trained object detection models save significant amounts of human labor when it comes to finding objects, especially rare objects, in overhead imagery. However, applying such techniques to find rare objects typically requires a large amount of labeled imagery data (typically requiring expensive manual labeling). We generate synthetic imagery to reduce the amount of manually labeled imagery required to train models, particularly for data-constrained applications. This approach takes real, unlabeled overhead imagery and inserts artificial 3D models of objects onto the imagery. To evaluate this technique, we collected a baseline dataset of overhead imagery with wind turbines that have been manually labeled and overhead imagery that does not contain wind turbines. We then add synthetic imagery to some of the unlabeled data to create a synthetic dataset. Our results indicate that adding synthetic imagery in training achieving higher levels of recall for similar levels of precision, outperforming the baseline of only real imagery." @default.
- W3206838923 created "2021-10-25" @default.
- W3206838923 creator A5007239332 @default.
- W3206838923 creator A5014469594 @default.
- W3206838923 creator A5027942450 @default.
- W3206838923 creator A5044580446 @default.
- W3206838923 creator A5054438743 @default.
- W3206838923 creator A5059045087 @default.
- W3206838923 creator A5071531263 @default.
- W3206838923 creator A5074481221 @default.
- W3206838923 date "2021-07-11" @default.
- W3206838923 modified "2023-09-27" @default.
- W3206838923 title "Wind Turbine Detection with Synthetic Overhead Imagery" @default.
- W3206838923 cites W2031489346 @default.
- W3206838923 cites W2796347433 @default.
- W3206838923 cites W2887280559 @default.
- W3206838923 cites W3100865231 @default.
- W3206838923 cites W2768337754 @default.
- W3206838923 doi "https://doi.org/10.1109/igarss47720.2021.9554306" @default.
- W3206838923 hasPublicationYear "2021" @default.
- W3206838923 type Work @default.
- W3206838923 sameAs 3206838923 @default.
- W3206838923 citedByCount "0" @default.
- W3206838923 crossrefType "proceedings-article" @default.
- W3206838923 hasAuthorship W3206838923A5007239332 @default.
- W3206838923 hasAuthorship W3206838923A5014469594 @default.
- W3206838923 hasAuthorship W3206838923A5027942450 @default.
- W3206838923 hasAuthorship W3206838923A5044580446 @default.
- W3206838923 hasAuthorship W3206838923A5054438743 @default.
- W3206838923 hasAuthorship W3206838923A5059045087 @default.
- W3206838923 hasAuthorship W3206838923A5071531263 @default.
- W3206838923 hasAuthorship W3206838923A5074481221 @default.
- W3206838923 hasConcept C111919701 @default.
- W3206838923 hasConcept C153180895 @default.
- W3206838923 hasConcept C154945302 @default.
- W3206838923 hasConcept C2776151529 @default.
- W3206838923 hasConcept C2779960059 @default.
- W3206838923 hasConcept C2781238097 @default.
- W3206838923 hasConcept C31972630 @default.
- W3206838923 hasConcept C41008148 @default.
- W3206838923 hasConceptScore W3206838923C111919701 @default.
- W3206838923 hasConceptScore W3206838923C153180895 @default.
- W3206838923 hasConceptScore W3206838923C154945302 @default.
- W3206838923 hasConceptScore W3206838923C2776151529 @default.
- W3206838923 hasConceptScore W3206838923C2779960059 @default.
- W3206838923 hasConceptScore W3206838923C2781238097 @default.
- W3206838923 hasConceptScore W3206838923C31972630 @default.
- W3206838923 hasConceptScore W3206838923C41008148 @default.
- W3206838923 hasFunder F4320309133 @default.
- W3206838923 hasLocation W32068389231 @default.
- W3206838923 hasOpenAccess W3206838923 @default.
- W3206838923 hasPrimaryLocation W32068389231 @default.
- W3206838923 hasRelatedWork W1971759388 @default.
- W3206838923 hasRelatedWork W2004370856 @default.
- W3206838923 hasRelatedWork W2007544051 @default.
- W3206838923 hasRelatedWork W2021186063 @default.
- W3206838923 hasRelatedWork W2025800131 @default.
- W3206838923 hasRelatedWork W2035456249 @default.
- W3206838923 hasRelatedWork W2095705906 @default.
- W3206838923 hasRelatedWork W2129974284 @default.
- W3206838923 hasRelatedWork W2922421953 @default.
- W3206838923 hasRelatedWork W2975200075 @default.
- W3206838923 isParatext "false" @default.
- W3206838923 isRetracted "false" @default.
- W3206838923 magId "3206838923" @default.
- W3206838923 workType "article" @default.