Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206845843> ?p ?o ?g. }
- W3206845843 abstract "A more accurate preoperative prediction of lymph node involvement (LNI) in prostate cancer (PCa) would improve clinical treatment and follow-up strategies of this disease. We developed a predictive model based on machine learning (ML) combined with big data to achieve this.Clinicopathological characteristics of 2,884 PCa patients who underwent extended pelvic lymph node dissection (ePLND) were collected from the U.S. National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2015. Eight variables were included to establish an ML model. Model performance was evaluated by the receiver operating characteristic (ROC) curves and calibration plots for predictive accuracy. Decision curve analysis (DCA) and cutoff values were obtained to estimate its clinical utility.Three hundred and forty-four (11.9%) patients were identified with LNI. The five most important factors were the Gleason score, T stage of disease, percentage of positive cores, tumor size, and prostate-specific antigen levels with 158, 137, 128, 113, and 88 points, respectively. The XGBoost (XGB) model showed the best predictive performance and had the highest net benefit when compared with the other algorithms, achieving an area under the curve of 0.883. With a 5%~20% cutoff value, the XGB model performed best in reducing omissions and avoiding overtreatment of patients when dealing with LNI. This model also had a lower false-negative rate and a higher percentage of ePLND was avoided. In addition, DCA showed it has the highest net benefit across the whole range of threshold probabilities.We established an ML model based on big data for predicting LNI in PCa, and it could lead to a reduction of approximately 50% of ePLND cases. In addition, only ≤3% of patients were misdiagnosed with a cutoff value ranging from 5% to 20%. This promising study warrants further validation by using a larger prospective dataset." @default.
- W3206845843 created "2021-10-25" @default.
- W3206845843 creator A5015103218 @default.
- W3206845843 creator A5028481412 @default.
- W3206845843 creator A5038058192 @default.
- W3206845843 creator A5050275310 @default.
- W3206845843 creator A5058329392 @default.
- W3206845843 creator A5066577872 @default.
- W3206845843 creator A5068594226 @default.
- W3206845843 date "2021-10-14" @default.
- W3206845843 modified "2023-09-27" @default.
- W3206845843 title "Artificial Intelligence Combined With Big Data to Predict Lymph Node Involvement in Prostate Cancer: A Population-Based Study" @default.
- W3206845843 cites W1569718420 @default.
- W3206845843 cites W1606286286 @default.
- W3206845843 cites W1977875850 @default.
- W3206845843 cites W1978801336 @default.
- W3206845843 cites W1985301587 @default.
- W3206845843 cites W2004625759 @default.
- W3206845843 cites W2007995537 @default.
- W3206845843 cites W2035825349 @default.
- W3206845843 cites W2037073425 @default.
- W3206845843 cites W2045030989 @default.
- W3206845843 cites W2075338951 @default.
- W3206845843 cites W2080184398 @default.
- W3206845843 cites W2095183081 @default.
- W3206845843 cites W2117441254 @default.
- W3206845843 cites W2127145596 @default.
- W3206845843 cites W2137571400 @default.
- W3206845843 cites W2142391938 @default.
- W3206845843 cites W2172152967 @default.
- W3206845843 cites W2301685087 @default.
- W3206845843 cites W2398084274 @default.
- W3206845843 cites W2581766787 @default.
- W3206845843 cites W2717132379 @default.
- W3206845843 cites W2749426423 @default.
- W3206845843 cites W2767406878 @default.
- W3206845843 cites W2807764478 @default.
- W3206845843 cites W2896430583 @default.
- W3206845843 cites W2905295080 @default.
- W3206845843 cites W2911986083 @default.
- W3206845843 cites W2912664428 @default.
- W3206845843 cites W2913702106 @default.
- W3206845843 cites W2934399013 @default.
- W3206845843 cites W2945522282 @default.
- W3206845843 cites W2948930564 @default.
- W3206845843 cites W2958551102 @default.
- W3206845843 cites W2993415738 @default.
- W3206845843 cites W2995530776 @default.
- W3206845843 cites W3041681225 @default.
- W3206845843 cites W3082597452 @default.
- W3206845843 cites W3089279818 @default.
- W3206845843 cites W3097158220 @default.
- W3206845843 cites W3119005666 @default.
- W3206845843 cites W3119367752 @default.
- W3206845843 cites W3128180004 @default.
- W3206845843 cites W3165076802 @default.
- W3206845843 cites W3168380272 @default.
- W3206845843 doi "https://doi.org/10.3389/fonc.2021.763381" @default.
- W3206845843 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8551611" @default.
- W3206845843 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34722318" @default.
- W3206845843 hasPublicationYear "2021" @default.
- W3206845843 type Work @default.
- W3206845843 sameAs 3206845843 @default.
- W3206845843 citedByCount "7" @default.
- W3206845843 countsByYear W32068458432022 @default.
- W3206845843 countsByYear W32068458432023 @default.
- W3206845843 crossrefType "journal-article" @default.
- W3206845843 hasAuthorship W3206845843A5015103218 @default.
- W3206845843 hasAuthorship W3206845843A5028481412 @default.
- W3206845843 hasAuthorship W3206845843A5038058192 @default.
- W3206845843 hasAuthorship W3206845843A5050275310 @default.
- W3206845843 hasAuthorship W3206845843A5058329392 @default.
- W3206845843 hasAuthorship W3206845843A5066577872 @default.
- W3206845843 hasAuthorship W3206845843A5068594226 @default.
- W3206845843 hasBestOaLocation W32068458431 @default.
- W3206845843 hasConcept C105795698 @default.
- W3206845843 hasConcept C121332964 @default.
- W3206845843 hasConcept C121608353 @default.
- W3206845843 hasConcept C126322002 @default.
- W3206845843 hasConcept C146357865 @default.
- W3206845843 hasConcept C151730666 @default.
- W3206845843 hasConcept C2778217198 @default.
- W3206845843 hasConcept C2780192828 @default.
- W3206845843 hasConcept C2780849966 @default.
- W3206845843 hasConcept C2908647359 @default.
- W3206845843 hasConcept C33923547 @default.
- W3206845843 hasConcept C58471807 @default.
- W3206845843 hasConcept C62520636 @default.
- W3206845843 hasConcept C71924100 @default.
- W3206845843 hasConcept C86803240 @default.
- W3206845843 hasConcept C99454951 @default.
- W3206845843 hasConceptScore W3206845843C105795698 @default.
- W3206845843 hasConceptScore W3206845843C121332964 @default.
- W3206845843 hasConceptScore W3206845843C121608353 @default.
- W3206845843 hasConceptScore W3206845843C126322002 @default.
- W3206845843 hasConceptScore W3206845843C146357865 @default.
- W3206845843 hasConceptScore W3206845843C151730666 @default.
- W3206845843 hasConceptScore W3206845843C2778217198 @default.
- W3206845843 hasConceptScore W3206845843C2780192828 @default.
- W3206845843 hasConceptScore W3206845843C2780849966 @default.