Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206855077> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3206855077 abstract "The novel Coronavirus disease (COVID-19) has been the most critical global challenge over the past months. Lung involvement quantification and distinguishing the types of infections from chest CT scans can assist in accurate severity assessment of COVID-19 pneumonia, efficient use of limited medical resources, and saving more lives. Nevertheless, visual assessment of chest CT images and evaluating the disease severity by radiologists are expensive and prone to error. This paper proposes an automated deep learning (DL)-based framework for multi-class segmentation of COVID lesions from chest CT images that takes the CT images as the input and generates a mask indicating the infection regions. The infection regions are segmented under two classes of data, GGOs and consolidations, which are the most common CT patterns of COVID-19 pneumonia. The proposed end-to-end framework contains four encoder-decoder-based segmentation networks that exploit the top-performing pretrained CNNs as the encoder paths and are developed and trained separately. The results then are aggregated using a pixel-level Soft Majority Voting to obtain the final class membership probabilities for each pixel of the image. The proposed framework is evaluated using an open-access CT segmentation dataset. The experimental results indicate that our method successfully performs multi-class segmenting of COVID-19 lung infection regions and outperforms previous works." @default.
- W3206855077 created "2021-10-25" @default.
- W3206855077 creator A5027263568 @default.
- W3206855077 creator A5034218185 @default.
- W3206855077 creator A5050585130 @default.
- W3206855077 creator A5058253407 @default.
- W3206855077 creator A5059152392 @default.
- W3206855077 creator A5077532504 @default.
- W3206855077 creator A5085467616 @default.
- W3206855077 creator A5087887047 @default.
- W3206855077 creator A5089551127 @default.
- W3206855077 date "2021-08-11" @default.
- W3206855077 modified "2023-10-18" @default.
- W3206855077 title "An Ensemble Learning Framework For Multi-Class Covid-19 Lesion Segmentation From Chest Ct Images" @default.
- W3206855077 cites W2183341477 @default.
- W3206855077 cites W2964350391 @default.
- W3206855077 cites W3013277995 @default.
- W3206855077 cites W3017403618 @default.
- W3206855077 cites W3017855299 @default.
- W3206855077 cites W3021882509 @default.
- W3206855077 cites W3027763298 @default.
- W3206855077 cites W3033272814 @default.
- W3206855077 cites W3035151116 @default.
- W3206855077 cites W3035740374 @default.
- W3206855077 cites W3040660552 @default.
- W3206855077 cites W3083753334 @default.
- W3206855077 cites W3086039674 @default.
- W3206855077 doi "https://doi.org/10.1109/icas49788.2021.9551169" @default.
- W3206855077 hasPublicationYear "2021" @default.
- W3206855077 type Work @default.
- W3206855077 sameAs 3206855077 @default.
- W3206855077 citedByCount "5" @default.
- W3206855077 countsByYear W32068550772021 @default.
- W3206855077 countsByYear W32068550772022 @default.
- W3206855077 countsByYear W32068550772023 @default.
- W3206855077 crossrefType "proceedings-article" @default.
- W3206855077 hasAuthorship W3206855077A5027263568 @default.
- W3206855077 hasAuthorship W3206855077A5034218185 @default.
- W3206855077 hasAuthorship W3206855077A5050585130 @default.
- W3206855077 hasAuthorship W3206855077A5058253407 @default.
- W3206855077 hasAuthorship W3206855077A5059152392 @default.
- W3206855077 hasAuthorship W3206855077A5077532504 @default.
- W3206855077 hasAuthorship W3206855077A5085467616 @default.
- W3206855077 hasAuthorship W3206855077A5087887047 @default.
- W3206855077 hasAuthorship W3206855077A5089551127 @default.
- W3206855077 hasConcept C111919701 @default.
- W3206855077 hasConcept C118505674 @default.
- W3206855077 hasConcept C124504099 @default.
- W3206855077 hasConcept C126838900 @default.
- W3206855077 hasConcept C142724271 @default.
- W3206855077 hasConcept C153180895 @default.
- W3206855077 hasConcept C154945302 @default.
- W3206855077 hasConcept C160633673 @default.
- W3206855077 hasConcept C165696696 @default.
- W3206855077 hasConcept C2779134260 @default.
- W3206855077 hasConcept C3008058167 @default.
- W3206855077 hasConcept C31972630 @default.
- W3206855077 hasConcept C38652104 @default.
- W3206855077 hasConcept C41008148 @default.
- W3206855077 hasConcept C524204448 @default.
- W3206855077 hasConcept C71924100 @default.
- W3206855077 hasConcept C89600930 @default.
- W3206855077 hasConceptScore W3206855077C111919701 @default.
- W3206855077 hasConceptScore W3206855077C118505674 @default.
- W3206855077 hasConceptScore W3206855077C124504099 @default.
- W3206855077 hasConceptScore W3206855077C126838900 @default.
- W3206855077 hasConceptScore W3206855077C142724271 @default.
- W3206855077 hasConceptScore W3206855077C153180895 @default.
- W3206855077 hasConceptScore W3206855077C154945302 @default.
- W3206855077 hasConceptScore W3206855077C160633673 @default.
- W3206855077 hasConceptScore W3206855077C165696696 @default.
- W3206855077 hasConceptScore W3206855077C2779134260 @default.
- W3206855077 hasConceptScore W3206855077C3008058167 @default.
- W3206855077 hasConceptScore W3206855077C31972630 @default.
- W3206855077 hasConceptScore W3206855077C38652104 @default.
- W3206855077 hasConceptScore W3206855077C41008148 @default.
- W3206855077 hasConceptScore W3206855077C524204448 @default.
- W3206855077 hasConceptScore W3206855077C71924100 @default.
- W3206855077 hasConceptScore W3206855077C89600930 @default.
- W3206855077 hasLocation W32068550771 @default.
- W3206855077 hasOpenAccess W3206855077 @default.
- W3206855077 hasPrimaryLocation W32068550771 @default.
- W3206855077 hasRelatedWork W121273120 @default.
- W3206855077 hasRelatedWork W1669643531 @default.
- W3206855077 hasRelatedWork W2005437358 @default.
- W3206855077 hasRelatedWork W2008656436 @default.
- W3206855077 hasRelatedWork W2023558673 @default.
- W3206855077 hasRelatedWork W2134924024 @default.
- W3206855077 hasRelatedWork W2337415362 @default.
- W3206855077 hasRelatedWork W2517104666 @default.
- W3206855077 hasRelatedWork W2740820121 @default.
- W3206855077 hasRelatedWork W4312857205 @default.
- W3206855077 isParatext "false" @default.
- W3206855077 isRetracted "false" @default.
- W3206855077 magId "3206855077" @default.
- W3206855077 workType "article" @default.