Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206876789> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3206876789 endingPage "374" @default.
- W3206876789 startingPage "361" @default.
- W3206876789 abstract "India is a country that is highly dependent on agriculture, and it is the primary source of livelihood for a vast majority of the people. One of the factors that agriculture is highly dependent is rainfall. In this study, machine learning models like Support Vector Machines, Artificial Neural Networks, and Multiple Linear Regression have been used to propose a rainfall prediction model that can predict the monthly rainfall for 542 districts of India. This study uses 119 years (1901–2019) of historical data to train the various machine learning models. The final prediction is an ensemble of two different approaches that achieves an average root mean square error of 3.911 mm." @default.
- W3206876789 created "2021-10-25" @default.
- W3206876789 creator A5005667262 @default.
- W3206876789 creator A5044625800 @default.
- W3206876789 creator A5079317834 @default.
- W3206876789 creator A5080238482 @default.
- W3206876789 date "2021-01-01" @default.
- W3206876789 modified "2023-10-17" @default.
- W3206876789 title "Advanced Rainfall Prediction Model for India Using Various Regression Algorithms" @default.
- W3206876789 cites W2059261720 @default.
- W3206876789 cites W2732692660 @default.
- W3206876789 cites W2790979755 @default.
- W3206876789 cites W2792868700 @default.
- W3206876789 cites W2893741203 @default.
- W3206876789 cites W2909186397 @default.
- W3206876789 cites W2953717279 @default.
- W3206876789 cites W2973344974 @default.
- W3206876789 cites W2984328384 @default.
- W3206876789 cites W2998567488 @default.
- W3206876789 cites W3006506571 @default.
- W3206876789 cites W3047450523 @default.
- W3206876789 doi "https://doi.org/10.1007/978-981-16-2712-5_30" @default.
- W3206876789 hasPublicationYear "2021" @default.
- W3206876789 type Work @default.
- W3206876789 sameAs 3206876789 @default.
- W3206876789 citedByCount "1" @default.
- W3206876789 countsByYear W32068767892022 @default.
- W3206876789 crossrefType "book-chapter" @default.
- W3206876789 hasAuthorship W3206876789A5005667262 @default.
- W3206876789 hasAuthorship W3206876789A5044625800 @default.
- W3206876789 hasAuthorship W3206876789A5079317834 @default.
- W3206876789 hasAuthorship W3206876789A5080238482 @default.
- W3206876789 hasConcept C105795698 @default.
- W3206876789 hasConcept C11413529 @default.
- W3206876789 hasConcept C119857082 @default.
- W3206876789 hasConcept C154945302 @default.
- W3206876789 hasConcept C33923547 @default.
- W3206876789 hasConcept C41008148 @default.
- W3206876789 hasConcept C83546350 @default.
- W3206876789 hasConceptScore W3206876789C105795698 @default.
- W3206876789 hasConceptScore W3206876789C11413529 @default.
- W3206876789 hasConceptScore W3206876789C119857082 @default.
- W3206876789 hasConceptScore W3206876789C154945302 @default.
- W3206876789 hasConceptScore W3206876789C33923547 @default.
- W3206876789 hasConceptScore W3206876789C41008148 @default.
- W3206876789 hasConceptScore W3206876789C83546350 @default.
- W3206876789 hasLocation W32068767891 @default.
- W3206876789 hasOpenAccess W3206876789 @default.
- W3206876789 hasPrimaryLocation W32068767891 @default.
- W3206876789 hasRelatedWork W2961085424 @default.
- W3206876789 hasRelatedWork W3046775127 @default.
- W3206876789 hasRelatedWork W3107602296 @default.
- W3206876789 hasRelatedWork W3170094116 @default.
- W3206876789 hasRelatedWork W3209574120 @default.
- W3206876789 hasRelatedWork W4205958290 @default.
- W3206876789 hasRelatedWork W4286629047 @default.
- W3206876789 hasRelatedWork W4306321456 @default.
- W3206876789 hasRelatedWork W4306674287 @default.
- W3206876789 hasRelatedWork W4224009465 @default.
- W3206876789 isParatext "false" @default.
- W3206876789 isRetracted "false" @default.
- W3206876789 magId "3206876789" @default.
- W3206876789 workType "book-chapter" @default.