Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206885183> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3206885183 endingPage "28" @default.
- W3206885183 startingPage "28" @default.
- W3206885183 abstract "According to recent security analysis reports, malicious software (a.k.a. malware) is rising at an alarming rate in numbers, complexity, and harmful purposes to compromise the security of modern computer systems. Recently, malware detection based on low-level hardware features (e.g., Hardware Performance Counters (HPCs) information) has emerged as an effective alternative solution to address the complexity and performance overheads of traditional software-based detection methods. Hardware-assisted Malware Detection (HMD) techniques depend on standard Machine Learning (ML) classifiers to detect signatures of malicious applications by monitoring built-in HPC registers during execution at run-time. Prior HMD methods though effective have limited their study on detecting malicious applications that are spawned as a separate thread during application execution, hence detecting stealthy malware patterns at run-time remains a critical challenge. Stealthy malware refers to harmful cyber attacks in which malicious code is hidden within benign applications and remains undetected by traditional malware detection approaches. In this paper, we first present a comprehensive review of recent advances in hardware-assisted malware detection studies that have used standard ML techniques to detect the malware signatures. Next, to address the challenge of stealthy malware detection at the processor’s hardware level, we propose StealthMiner, a novel specialized time series machine learning-based approach to accurately detect stealthy malware trace at run-time using branch instructions, the most prominent HPC feature. StealthMiner is based on a lightweight time series Fully Convolutional Neural Network (FCN) model that automatically identifies potentially contaminated samples in HPC-based time series data and utilizes them to accurately recognize the trace of stealthy malware. Our analysis demonstrates that using state-of-the-art ML-based malware detection methods is not effective in detecting stealthy malware samples since the captured HPC data not only represents malware but also carries benign applications’ microarchitectural data. The experimental results demonstrate that with the aid of our novel intelligent approach, stealthy malware can be detected at run-time with 94% detection performance on average with only one HPC feature, outperforming the detection performance of state-of-the-art HMD and general time series classification methods by up to 42% and 36%, respectively." @default.
- W3206885183 created "2021-10-25" @default.
- W3206885183 creator A5023590471 @default.
- W3206885183 creator A5025224867 @default.
- W3206885183 creator A5044003457 @default.
- W3206885183 creator A5047382437 @default.
- W3206885183 creator A5051940611 @default.
- W3206885183 creator A5080844858 @default.
- W3206885183 creator A5080860698 @default.
- W3206885183 date "2021-10-17" @default.
- W3206885183 modified "2023-10-05" @default.
- W3206885183 title "Towards Accurate Run-Time Hardware-Assisted Stealthy Malware Detection: A Lightweight, yet Effective Time Series CNN-Based Approach" @default.
- W3206885183 cites W1968354112 @default.
- W3206885183 cites W1971139551 @default.
- W3206885183 cites W1977177161 @default.
- W3206885183 cites W1984674851 @default.
- W3206885183 cites W1990649188 @default.
- W3206885183 cites W2034053858 @default.
- W3206885183 cites W2036853599 @default.
- W3206885183 cites W2058315483 @default.
- W3206885183 cites W2088503757 @default.
- W3206885183 cites W2124523382 @default.
- W3206885183 cites W2132874238 @default.
- W3206885183 cites W2138471478 @default.
- W3206885183 cites W2166844173 @default.
- W3206885183 cites W2237307454 @default.
- W3206885183 cites W2292977173 @default.
- W3206885183 cites W2315350509 @default.
- W3206885183 cites W2344380211 @default.
- W3206885183 cites W2508317201 @default.
- W3206885183 cites W2594364040 @default.
- W3206885183 cites W2602229646 @default.
- W3206885183 cites W2612343211 @default.
- W3206885183 cites W2625408821 @default.
- W3206885183 cites W2754051771 @default.
- W3206885183 cites W2781484049 @default.
- W3206885183 cites W2807415350 @default.
- W3206885183 cites W2890774642 @default.
- W3206885183 cites W2945027786 @default.
- W3206885183 cites W2945097383 @default.
- W3206885183 cites W2963265635 @default.
- W3206885183 cites W2998010409 @default.
- W3206885183 cites W3046195620 @default.
- W3206885183 cites W3083161653 @default.
- W3206885183 cites W4232751114 @default.
- W3206885183 cites W4238295473 @default.
- W3206885183 cites W4247881240 @default.
- W3206885183 cites W4256383029 @default.
- W3206885183 doi "https://doi.org/10.3390/cryptography5040028" @default.
- W3206885183 hasPublicationYear "2021" @default.
- W3206885183 type Work @default.
- W3206885183 sameAs 3206885183 @default.
- W3206885183 citedByCount "8" @default.
- W3206885183 countsByYear W32068851832022 @default.
- W3206885183 countsByYear W32068851832023 @default.
- W3206885183 crossrefType "journal-article" @default.
- W3206885183 hasAuthorship W3206885183A5023590471 @default.
- W3206885183 hasAuthorship W3206885183A5025224867 @default.
- W3206885183 hasAuthorship W3206885183A5044003457 @default.
- W3206885183 hasAuthorship W3206885183A5047382437 @default.
- W3206885183 hasAuthorship W3206885183A5051940611 @default.
- W3206885183 hasAuthorship W3206885183A5080844858 @default.
- W3206885183 hasAuthorship W3206885183A5080860698 @default.
- W3206885183 hasBestOaLocation W32068851831 @default.
- W3206885183 hasConcept C111919701 @default.
- W3206885183 hasConcept C149635348 @default.
- W3206885183 hasConcept C2777904410 @default.
- W3206885183 hasConcept C41008148 @default.
- W3206885183 hasConcept C541664917 @default.
- W3206885183 hasConcept C84525096 @default.
- W3206885183 hasConceptScore W3206885183C111919701 @default.
- W3206885183 hasConceptScore W3206885183C149635348 @default.
- W3206885183 hasConceptScore W3206885183C2777904410 @default.
- W3206885183 hasConceptScore W3206885183C41008148 @default.
- W3206885183 hasConceptScore W3206885183C541664917 @default.
- W3206885183 hasConceptScore W3206885183C84525096 @default.
- W3206885183 hasIssue "4" @default.
- W3206885183 hasLocation W32068851831 @default.
- W3206885183 hasLocation W32068851832 @default.
- W3206885183 hasLocation W32068851833 @default.
- W3206885183 hasOpenAccess W3206885183 @default.
- W3206885183 hasPrimaryLocation W32068851831 @default.
- W3206885183 hasRelatedWork W213077287 @default.
- W3206885183 hasRelatedWork W2375248064 @default.
- W3206885183 hasRelatedWork W2384845090 @default.
- W3206885183 hasRelatedWork W2398994170 @default.
- W3206885183 hasRelatedWork W3025424853 @default.
- W3206885183 hasRelatedWork W3090964854 @default.
- W3206885183 hasRelatedWork W4249009605 @default.
- W3206885183 hasRelatedWork W4320024193 @default.
- W3206885183 hasRelatedWork W4386089569 @default.
- W3206885183 hasRelatedWork W2187022842 @default.
- W3206885183 hasVolume "5" @default.
- W3206885183 isParatext "false" @default.
- W3206885183 isRetracted "false" @default.
- W3206885183 magId "3206885183" @default.
- W3206885183 workType "article" @default.