Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206907296> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3206907296 abstract "Modern Systems-on-Chip (SoCs) based on Field-Programmable Gate Arrays (FPGAs) offer users significant flexibility in deciding the best approach to implement Convolutional Neural Networks (CNNs): a) in a fixed, hardwired general-purpose processor, or b) using the programmable logic to implement application-specific processing cores. This thesis proposes an automated toolflow that maps Tensorflow/Keras pre-trained models into different possible platforms: ARM core using the Neon extension and a soft-core GPU for FPGA. CNNs are heterogeneous, meaning that convolutional layers, for example, will have different resource access and computation requirements as the Fully Connected (FC) layers, hinting that different hardware may be optimal for different layer types. After evaluating the performance of different CNNs executed in an ARM Cortex-A9 and the soft-core GPU, it was found that convolutional layers were 5.9x faster in the soft-core GPU than in the ARM core. On the other hand, FC layers were executed faster in the ARM core. As a result, this work proposes a collaborative execution of CNNs using these two platforms together, running the convolutional and maxpooling layers in the soft-core GPU and the FC layers in the ARM core, achieving a speedup of 2x against using only the ARM core. Consequently, this thesis is exploring other mixes of hardware platforms or even using partial reconfiguration techniques." @default.
- W3206907296 created "2021-10-25" @default.
- W3206907296 creator A5040888306 @default.
- W3206907296 date "2021-08-01" @default.
- W3206907296 modified "2023-09-30" @default.
- W3206907296 title "Towards the Efficient Multi-Platform Execution of Deep Neural Networks" @default.
- W3206907296 cites W2112796928 @default.
- W3206907296 cites W2296385998 @default.
- W3206907296 cites W2618530766 @default.
- W3206907296 cites W2783444794 @default.
- W3206907296 cites W2963568120 @default.
- W3206907296 doi "https://doi.org/10.1109/fpl53798.2021.00056" @default.
- W3206907296 hasPublicationYear "2021" @default.
- W3206907296 type Work @default.
- W3206907296 sameAs 3206907296 @default.
- W3206907296 citedByCount "1" @default.
- W3206907296 countsByYear W32069072962022 @default.
- W3206907296 crossrefType "proceedings-article" @default.
- W3206907296 hasAuthorship W3206907296A5040888306 @default.
- W3206907296 hasConcept C105795698 @default.
- W3206907296 hasConcept C11413529 @default.
- W3206907296 hasConcept C118524514 @default.
- W3206907296 hasConcept C119701452 @default.
- W3206907296 hasConcept C149635348 @default.
- W3206907296 hasConcept C154945302 @default.
- W3206907296 hasConcept C173608175 @default.
- W3206907296 hasConcept C2164484 @default.
- W3206907296 hasConcept C2780598303 @default.
- W3206907296 hasConcept C33923547 @default.
- W3206907296 hasConcept C41008148 @default.
- W3206907296 hasConcept C42935608 @default.
- W3206907296 hasConcept C45374587 @default.
- W3206907296 hasConcept C68339613 @default.
- W3206907296 hasConcept C76155785 @default.
- W3206907296 hasConcept C78766204 @default.
- W3206907296 hasConcept C81363708 @default.
- W3206907296 hasConcept C9390403 @default.
- W3206907296 hasConceptScore W3206907296C105795698 @default.
- W3206907296 hasConceptScore W3206907296C11413529 @default.
- W3206907296 hasConceptScore W3206907296C118524514 @default.
- W3206907296 hasConceptScore W3206907296C119701452 @default.
- W3206907296 hasConceptScore W3206907296C149635348 @default.
- W3206907296 hasConceptScore W3206907296C154945302 @default.
- W3206907296 hasConceptScore W3206907296C173608175 @default.
- W3206907296 hasConceptScore W3206907296C2164484 @default.
- W3206907296 hasConceptScore W3206907296C2780598303 @default.
- W3206907296 hasConceptScore W3206907296C33923547 @default.
- W3206907296 hasConceptScore W3206907296C41008148 @default.
- W3206907296 hasConceptScore W3206907296C42935608 @default.
- W3206907296 hasConceptScore W3206907296C45374587 @default.
- W3206907296 hasConceptScore W3206907296C68339613 @default.
- W3206907296 hasConceptScore W3206907296C76155785 @default.
- W3206907296 hasConceptScore W3206907296C78766204 @default.
- W3206907296 hasConceptScore W3206907296C81363708 @default.
- W3206907296 hasConceptScore W3206907296C9390403 @default.
- W3206907296 hasLocation W32069072961 @default.
- W3206907296 hasOpenAccess W3206907296 @default.
- W3206907296 hasPrimaryLocation W32069072961 @default.
- W3206907296 hasRelatedWork W2081974348 @default.
- W3206907296 hasRelatedWork W2116589082 @default.
- W3206907296 hasRelatedWork W2136732189 @default.
- W3206907296 hasRelatedWork W2143904576 @default.
- W3206907296 hasRelatedWork W2151233254 @default.
- W3206907296 hasRelatedWork W2361654132 @default.
- W3206907296 hasRelatedWork W2366027386 @default.
- W3206907296 hasRelatedWork W282684715 @default.
- W3206907296 hasRelatedWork W2913355112 @default.
- W3206907296 hasRelatedWork W3217667592 @default.
- W3206907296 isParatext "false" @default.
- W3206907296 isRetracted "false" @default.
- W3206907296 magId "3206907296" @default.
- W3206907296 workType "article" @default.