Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206931290> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3206931290 abstract "Deep Neural Networks (DNNs) are a promising tool for Global Navigation Satellite System (GNSS) positioning in the presence of multipath and non-line-of-sight errors, owing to their ability to model complex errors using data. However, developing a DNN for GNSS positioning presents various challenges, such as 1) poor numerical conditioning caused by large variations in measurements and position values across the globe, 2) varying number and order within the set of measurements due to changing satellite visibility, and 3) overfitting to available data. In this work, we address the aforementioned challenges and propose an approach for GNSS positioning by applying DNN-based corrections to an initial position guess. Our DNN learns to output the position correction using the set of pseudorange residuals and satellite line-of-sight vectors as inputs. The limited variation in these input and output values improves the numerical conditioning for our DNN. We design our DNN architecture to combine information from the available GNSS measurements, which vary both in number and order, by leveraging recent advancements in set-based deep learning methods. Furthermore, we present a data augmentation strategy for reducing overfitting in the DNN by randomizing the initial position guesses. We first perform simulations and show an improvement in the initial positioning error when our DNN-based corrections are applied. After this, we demonstrate that our approach outperforms a WLS baseline on real-world data. Our implementation is available at github.com/Stanford-NavLab/deep_gnss." @default.
- W3206931290 created "2021-10-25" @default.
- W3206931290 creator A5018527831 @default.
- W3206931290 creator A5068974841 @default.
- W3206931290 creator A5069625302 @default.
- W3206931290 creator A5090395350 @default.
- W3206931290 date "2021-10-18" @default.
- W3206931290 modified "2023-10-07" @default.
- W3206931290 title "Improving GNSS Positioning using Neural Network-based Corrections" @default.
- W3206931290 cites W2091758302 @default.
- W3206931290 cites W2181845023 @default.
- W3206931290 cites W2200124539 @default.
- W3206931290 cites W2557283755 @default.
- W3206931290 cites W2612167019 @default.
- W3206931290 cites W2737900875 @default.
- W3206931290 cites W2753798143 @default.
- W3206931290 cites W2781561575 @default.
- W3206931290 cites W2953273646 @default.
- W3206931290 cites W2964121744 @default.
- W3206931290 cites W2964248288 @default.
- W3206931290 cites W2980247588 @default.
- W3206931290 cites W3013198257 @default.
- W3206931290 cites W3035030518 @default.
- W3206931290 cites W3037646323 @default.
- W3206931290 cites W3089389996 @default.
- W3206931290 cites W3097845317 @default.
- W3206931290 cites W3104828800 @default.
- W3206931290 cites W3189475240 @default.
- W3206931290 doi "https://doi.org/10.48550/arxiv.2110.09581" @default.
- W3206931290 hasPublicationYear "2021" @default.
- W3206931290 type Work @default.
- W3206931290 sameAs 3206931290 @default.
- W3206931290 citedByCount "0" @default.
- W3206931290 crossrefType "posted-content" @default.
- W3206931290 hasAuthorship W3206931290A5018527831 @default.
- W3206931290 hasAuthorship W3206931290A5068974841 @default.
- W3206931290 hasAuthorship W3206931290A5069625302 @default.
- W3206931290 hasAuthorship W3206931290A5090395350 @default.
- W3206931290 hasBestOaLocation W32069312901 @default.
- W3206931290 hasConcept C123403432 @default.
- W3206931290 hasConcept C127413603 @default.
- W3206931290 hasConcept C14279187 @default.
- W3206931290 hasConcept C146978453 @default.
- W3206931290 hasConcept C153294291 @default.
- W3206931290 hasConcept C154945302 @default.
- W3206931290 hasConcept C166212672 @default.
- W3206931290 hasConcept C177264268 @default.
- W3206931290 hasConcept C19269812 @default.
- W3206931290 hasConcept C199360897 @default.
- W3206931290 hasConcept C205649164 @default.
- W3206931290 hasConcept C22019652 @default.
- W3206931290 hasConcept C41008148 @default.
- W3206931290 hasConcept C50644808 @default.
- W3206931290 hasConcept C58489278 @default.
- W3206931290 hasConcept C60229501 @default.
- W3206931290 hasConcept C76155785 @default.
- W3206931290 hasConcept C79403827 @default.
- W3206931290 hasConceptScore W3206931290C123403432 @default.
- W3206931290 hasConceptScore W3206931290C127413603 @default.
- W3206931290 hasConceptScore W3206931290C14279187 @default.
- W3206931290 hasConceptScore W3206931290C146978453 @default.
- W3206931290 hasConceptScore W3206931290C153294291 @default.
- W3206931290 hasConceptScore W3206931290C154945302 @default.
- W3206931290 hasConceptScore W3206931290C166212672 @default.
- W3206931290 hasConceptScore W3206931290C177264268 @default.
- W3206931290 hasConceptScore W3206931290C19269812 @default.
- W3206931290 hasConceptScore W3206931290C199360897 @default.
- W3206931290 hasConceptScore W3206931290C205649164 @default.
- W3206931290 hasConceptScore W3206931290C22019652 @default.
- W3206931290 hasConceptScore W3206931290C41008148 @default.
- W3206931290 hasConceptScore W3206931290C50644808 @default.
- W3206931290 hasConceptScore W3206931290C58489278 @default.
- W3206931290 hasConceptScore W3206931290C60229501 @default.
- W3206931290 hasConceptScore W3206931290C76155785 @default.
- W3206931290 hasConceptScore W3206931290C79403827 @default.
- W3206931290 hasLocation W32069312901 @default.
- W3206931290 hasLocation W32069312902 @default.
- W3206931290 hasOpenAccess W3206931290 @default.
- W3206931290 hasPrimaryLocation W32069312901 @default.
- W3206931290 hasRelatedWork W1495108888 @default.
- W3206931290 hasRelatedWork W1979524867 @default.
- W3206931290 hasRelatedWork W2035213048 @default.
- W3206931290 hasRelatedWork W2056076863 @default.
- W3206931290 hasRelatedWork W2370601158 @default.
- W3206931290 hasRelatedWork W2393330879 @default.
- W3206931290 hasRelatedWork W3005395558 @default.
- W3206931290 hasRelatedWork W3035350709 @default.
- W3206931290 hasRelatedWork W3213244393 @default.
- W3206931290 hasRelatedWork W4306250116 @default.
- W3206931290 isParatext "false" @default.
- W3206931290 isRetracted "false" @default.
- W3206931290 magId "3206931290" @default.
- W3206931290 workType "article" @default.