Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206933980> ?p ?o ?g. }
- W3206933980 endingPage "209" @default.
- W3206933980 startingPage "204" @default.
- W3206933980 abstract "Objective To develope a deep learning algorithm for pathological classification of chronic gastritis and assess its performance using whole-slide images (WSIs). Methods We retrospectively collected 1,250 gastric biopsy specimens (1,128 gastritis, 122 normal mucosa) from PLA General Hospital. The deep learning algorithm based on DeepLab v3 (ResNet-50) architecture was trained and validated using 1,008 WSIs and 100 WSIs, respectively. The diagnostic performance of the algorithm was tested on an independent test set of 142 WSIs, with the pathologists' consensus diagnosis as the gold standard. Results The receiver operating characteristic (ROC) curves were generated for chronic superficial gastritis (CSuG), chronic active gastritis (CAcG), and chronic atrophic gastritis (CAtG) in the test set, respectively. The areas under the ROC curves (AUCs) of the algorithm for CSuG, CAcG, and CAtG were 0.882, 0.90S and 0.910, respectively. The sensitivity and specificity of the deep learning algorithm for the classification of CSuG, CAcG, and CAtG were 0.790 and 1.000 (accuracy 0.880), 0.985 and 0.829 (accuracy 0.901), 0.952 and 0.992 (accuracy 0.986), respectively. The overall predicted accuracy for three different types of gastritis was 0.867. By flagging the suspicious regions identified by the algorithm in WSI, a more transparent and interpretable diagnosis can be generated. Conclusion The deep learning algorithm achieved high accuracy for chronic gastritis classification using WSIs. By pre-highlighting the different gastritis regions, it might be used as an auxiliary diagnostic tool to improve the work efficiency of pathologists." @default.
- W3206933980 created "2021-10-25" @default.
- W3206933980 creator A5001475306 @default.
- W3206933980 creator A5013135665 @default.
- W3206933980 creator A5024320322 @default.
- W3206933980 creator A5027594257 @default.
- W3206933980 creator A5090486312 @default.
- W3206933980 creator A5090964459 @default.
- W3206933980 date "2021-09-01" @default.
- W3206933980 modified "2023-10-13" @default.
- W3206933980 title "Histopathological Diagnosis System for Gastritis Using Deep Learning Algorithm" @default.
- W3206933980 cites W1276209945 @default.
- W3206933980 cites W1488629461 @default.
- W3206933980 cites W2336191596 @default.
- W3206933980 cites W2607075141 @default.
- W3206933980 cites W2760946358 @default.
- W3206933980 cites W2772723798 @default.
- W3206933980 cites W2774292910 @default.
- W3206933980 cites W2908201961 @default.
- W3206933980 cites W2947825023 @default.
- W3206933980 cites W2948387191 @default.
- W3206933980 cites W2949226441 @default.
- W3206933980 cites W2949648625 @default.
- W3206933980 cites W2954218616 @default.
- W3206933980 cites W2957942530 @default.
- W3206933980 cites W2993452393 @default.
- W3206933980 cites W3046049595 @default.
- W3206933980 cites W3081006013 @default.
- W3206933980 cites W3176607859 @default.
- W3206933980 doi "https://doi.org/10.1016/s1001-9294(21)00058-4" @default.
- W3206933980 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34666873" @default.
- W3206933980 hasPublicationYear "2021" @default.
- W3206933980 type Work @default.
- W3206933980 sameAs 3206933980 @default.
- W3206933980 citedByCount "0" @default.
- W3206933980 crossrefType "journal-article" @default.
- W3206933980 hasAuthorship W3206933980A5001475306 @default.
- W3206933980 hasAuthorship W3206933980A5013135665 @default.
- W3206933980 hasAuthorship W3206933980A5024320322 @default.
- W3206933980 hasAuthorship W3206933980A5027594257 @default.
- W3206933980 hasAuthorship W3206933980A5090486312 @default.
- W3206933980 hasAuthorship W3206933980A5090964459 @default.
- W3206933980 hasConcept C11413529 @default.
- W3206933980 hasConcept C126322002 @default.
- W3206933980 hasConcept C154945302 @default.
- W3206933980 hasConcept C169903167 @default.
- W3206933980 hasConcept C207886595 @default.
- W3206933980 hasConcept C2775934546 @default.
- W3206933980 hasConcept C2778677798 @default.
- W3206933980 hasConcept C2779422922 @default.
- W3206933980 hasConcept C2780342937 @default.
- W3206933980 hasConcept C2780561475 @default.
- W3206933980 hasConcept C3020132585 @default.
- W3206933980 hasConcept C40993552 @default.
- W3206933980 hasConcept C41008148 @default.
- W3206933980 hasConcept C58471807 @default.
- W3206933980 hasConcept C71924100 @default.
- W3206933980 hasConcept C90924648 @default.
- W3206933980 hasConceptScore W3206933980C11413529 @default.
- W3206933980 hasConceptScore W3206933980C126322002 @default.
- W3206933980 hasConceptScore W3206933980C154945302 @default.
- W3206933980 hasConceptScore W3206933980C169903167 @default.
- W3206933980 hasConceptScore W3206933980C207886595 @default.
- W3206933980 hasConceptScore W3206933980C2775934546 @default.
- W3206933980 hasConceptScore W3206933980C2778677798 @default.
- W3206933980 hasConceptScore W3206933980C2779422922 @default.
- W3206933980 hasConceptScore W3206933980C2780342937 @default.
- W3206933980 hasConceptScore W3206933980C2780561475 @default.
- W3206933980 hasConceptScore W3206933980C3020132585 @default.
- W3206933980 hasConceptScore W3206933980C40993552 @default.
- W3206933980 hasConceptScore W3206933980C41008148 @default.
- W3206933980 hasConceptScore W3206933980C58471807 @default.
- W3206933980 hasConceptScore W3206933980C71924100 @default.
- W3206933980 hasConceptScore W3206933980C90924648 @default.
- W3206933980 hasIssue "3" @default.
- W3206933980 hasLocation W32069339801 @default.
- W3206933980 hasOpenAccess W3206933980 @default.
- W3206933980 hasPrimaryLocation W32069339801 @default.
- W3206933980 hasRelatedWork W2912690075 @default.
- W3206933980 hasRelatedWork W2913326971 @default.
- W3206933980 hasRelatedWork W2926848333 @default.
- W3206933980 hasRelatedWork W2957792382 @default.
- W3206933980 hasRelatedWork W2962109221 @default.
- W3206933980 hasRelatedWork W2964046761 @default.
- W3206933980 hasRelatedWork W2969704006 @default.
- W3206933980 hasRelatedWork W2975108435 @default.
- W3206933980 hasRelatedWork W3019739646 @default.
- W3206933980 hasRelatedWork W3029665725 @default.
- W3206933980 hasRelatedWork W3032044812 @default.
- W3206933980 hasRelatedWork W3043279728 @default.
- W3206933980 hasRelatedWork W3084873959 @default.
- W3206933980 hasRelatedWork W3109216387 @default.
- W3206933980 hasRelatedWork W3123409890 @default.
- W3206933980 hasRelatedWork W3124608938 @default.
- W3206933980 hasRelatedWork W3135638450 @default.
- W3206933980 hasRelatedWork W3176607859 @default.
- W3206933980 hasRelatedWork W3194966064 @default.
- W3206933980 hasRelatedWork W3199546099 @default.