Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206937771> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3206937771 endingPage "108529" @default.
- W3206937771 startingPage "108529" @default.
- W3206937771 abstract "The prediction of network traffic characteristics helps in understanding this complex phenomenon and enables a number of practical applications, ranging from network planning and provisioning to management, with security implications as well. A significant corpus of work has so far focused on aggregated behavior, e.g., considering traffic volumes observed over a given time interval. Very limited attempts can instead be found tackling prediction at packet-level granularity. This much harder problem (whose solution extends trivially to the aggregated prediction) allows a finer-grained knowledge and wider possibilities of exploitation. The recent investigation and success of sophisticated Deep Learning algorithms is now providing mature tools to face this challenging but promising goal. In this work, we investigate and specialize a set of architectures selected among Convolutional, Recurrent, and Composite Neural Networks, to predict mobile-app traffic at the finest (packet-level) granularity. We discuss and experimentally evaluate the prediction effectiveness of the provided approaches also assessing the benefits of a number of design choices such as memory size or multi-modality, investigating performance trends at packet level focusing on the head and the tail of biflows. We compare the results with both Markovian and classic Machine Learning approaches, showing increased performance with respect to state-of-the-art predictors (high-order Markov chains and Random Forest Regressor). For the sake of reproducibility and relevance to modern traffic, all evaluations are conducted leveraging two real human-generated mobile traffic datasets including different categories of mobile apps. The experimental results witness remarkable variability in prediction performance among different apps categories. The work also provides valuable analysis results and tools to compare different predictors and strike the best balance among the performance measures." @default.
- W3206937771 created "2021-10-25" @default.
- W3206937771 creator A5000897225 @default.
- W3206937771 creator A5056577356 @default.
- W3206937771 creator A5059880462 @default.
- W3206937771 creator A5062538316 @default.
- W3206937771 creator A5064292700 @default.
- W3206937771 creator A5068466049 @default.
- W3206937771 date "2021-12-01" @default.
- W3206937771 modified "2023-10-18" @default.
- W3206937771 title "Packet-level prediction of mobile-app traffic using multitask Deep Learning" @default.
- W3206937771 cites W1021545722 @default.
- W3206937771 cites W2022297269 @default.
- W3206937771 cites W2107372872 @default.
- W3206937771 cites W2117079848 @default.
- W3206937771 cites W2145091572 @default.
- W3206937771 cites W2149600645 @default.
- W3206937771 cites W2157638525 @default.
- W3206937771 cites W2168006138 @default.
- W3206937771 cites W2319641917 @default.
- W3206937771 cites W2323435167 @default.
- W3206937771 cites W2415205528 @default.
- W3206937771 cites W2591735613 @default.
- W3206937771 cites W2623266823 @default.
- W3206937771 cites W2758219826 @default.
- W3206937771 cites W2768726319 @default.
- W3206937771 cites W2772834218 @default.
- W3206937771 cites W2781156794 @default.
- W3206937771 cites W2895144199 @default.
- W3206937771 cites W2896827527 @default.
- W3206937771 cites W2897025665 @default.
- W3206937771 cites W2900089181 @default.
- W3206937771 cites W2912386632 @default.
- W3206937771 cites W2913340405 @default.
- W3206937771 cites W2963403784 @default.
- W3206937771 cites W2981559361 @default.
- W3206937771 cites W3033989372 @default.
- W3206937771 cites W3127084347 @default.
- W3206937771 doi "https://doi.org/10.1016/j.comnet.2021.108529" @default.
- W3206937771 hasPublicationYear "2021" @default.
- W3206937771 type Work @default.
- W3206937771 sameAs 3206937771 @default.
- W3206937771 citedByCount "14" @default.
- W3206937771 countsByYear W32069377712022 @default.
- W3206937771 countsByYear W32069377712023 @default.
- W3206937771 crossrefType "journal-article" @default.
- W3206937771 hasAuthorship W3206937771A5000897225 @default.
- W3206937771 hasAuthorship W3206937771A5056577356 @default.
- W3206937771 hasAuthorship W3206937771A5059880462 @default.
- W3206937771 hasAuthorship W3206937771A5062538316 @default.
- W3206937771 hasAuthorship W3206937771A5064292700 @default.
- W3206937771 hasAuthorship W3206937771A5068466049 @default.
- W3206937771 hasConcept C108583219 @default.
- W3206937771 hasConcept C119857082 @default.
- W3206937771 hasConcept C13280743 @default.
- W3206937771 hasConcept C154945302 @default.
- W3206937771 hasConcept C158379750 @default.
- W3206937771 hasConcept C172191483 @default.
- W3206937771 hasConcept C185798385 @default.
- W3206937771 hasConcept C205649164 @default.
- W3206937771 hasConcept C31258907 @default.
- W3206937771 hasConcept C41008148 @default.
- W3206937771 hasConcept C81363708 @default.
- W3206937771 hasConceptScore W3206937771C108583219 @default.
- W3206937771 hasConceptScore W3206937771C119857082 @default.
- W3206937771 hasConceptScore W3206937771C13280743 @default.
- W3206937771 hasConceptScore W3206937771C154945302 @default.
- W3206937771 hasConceptScore W3206937771C158379750 @default.
- W3206937771 hasConceptScore W3206937771C172191483 @default.
- W3206937771 hasConceptScore W3206937771C185798385 @default.
- W3206937771 hasConceptScore W3206937771C205649164 @default.
- W3206937771 hasConceptScore W3206937771C31258907 @default.
- W3206937771 hasConceptScore W3206937771C41008148 @default.
- W3206937771 hasConceptScore W3206937771C81363708 @default.
- W3206937771 hasLocation W32069377711 @default.
- W3206937771 hasOpenAccess W3206937771 @default.
- W3206937771 hasPrimaryLocation W32069377711 @default.
- W3206937771 hasRelatedWork W2731899572 @default.
- W3206937771 hasRelatedWork W2999805992 @default.
- W3206937771 hasRelatedWork W3116150086 @default.
- W3206937771 hasRelatedWork W3133861977 @default.
- W3206937771 hasRelatedWork W4200173597 @default.
- W3206937771 hasRelatedWork W4223943233 @default.
- W3206937771 hasRelatedWork W4291897433 @default.
- W3206937771 hasRelatedWork W4312417841 @default.
- W3206937771 hasRelatedWork W4321369474 @default.
- W3206937771 hasRelatedWork W4380075502 @default.
- W3206937771 hasVolume "200" @default.
- W3206937771 isParatext "false" @default.
- W3206937771 isRetracted "false" @default.
- W3206937771 magId "3206937771" @default.
- W3206937771 workType "article" @default.