Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206946253> ?p ?o ?g. }
- W3206946253 abstract "Here, we focus on more traditional approaches to quantum machine learning which try to speed up classical routines by making use of fault-tolerant quantum computers. We discuss quantum machine learning algorithms based on linear algebra subroutines such as matrix inversion, and those based on amplitude amplification or Grover search. We will then have a look at how classical probabilistic models like Bayesian nets and Boltzmann machines can be implemented on a quantum computer, and finish with an idea of how to use superposition to represent ensembles of classifiers." @default.
- W3206946253 created "2021-10-25" @default.
- W3206946253 creator A5073832417 @default.
- W3206946253 creator A5081919424 @default.
- W3206946253 date "2021-01-01" @default.
- W3206946253 modified "2023-09-23" @default.
- W3206946253 title "Fault-Tolerant Quantum Machine Learning" @default.
- W3206946253 cites W1490034338 @default.
- W3206946253 cites W1559984405 @default.
- W3206946253 cites W1671143355 @default.
- W3206946253 cites W1854045309 @default.
- W3206946253 cites W1871899311 @default.
- W3206946253 cites W1981783889 @default.
- W3206946253 cites W1988369744 @default.
- W3206946253 cites W1994630055 @default.
- W3206946253 cites W1997391728 @default.
- W3206946253 cites W2031056773 @default.
- W3206946253 cites W2042127289 @default.
- W3206946253 cites W2055784634 @default.
- W3206946253 cites W2070891810 @default.
- W3206946253 cites W2079905842 @default.
- W3206946253 cites W2103956991 @default.
- W3206946253 cites W2143891888 @default.
- W3206946253 cites W2150884987 @default.
- W3206946253 cites W2227200015 @default.
- W3206946253 cites W2286055517 @default.
- W3206946253 cites W2473976255 @default.
- W3206946253 cites W2489886790 @default.
- W3206946253 cites W2514933340 @default.
- W3206946253 cites W2557392572 @default.
- W3206946253 cites W2569934227 @default.
- W3206946253 cites W2592442398 @default.
- W3206946253 cites W2594860211 @default.
- W3206946253 cites W2768206303 @default.
- W3206946253 cites W2786167326 @default.
- W3206946253 cites W2911964244 @default.
- W3206946253 cites W2963837235 @default.
- W3206946253 cites W3004732066 @default.
- W3206946253 cites W3022578515 @default.
- W3206946253 cites W3023909288 @default.
- W3206946253 cites W3100722664 @default.
- W3206946253 cites W3101135395 @default.
- W3206946253 cites W3102327618 @default.
- W3206946253 cites W3106020145 @default.
- W3206946253 cites W3121428084 @default.
- W3206946253 cites W4255637037 @default.
- W3206946253 cites W653833424 @default.
- W3206946253 doi "https://doi.org/10.1007/978-3-030-83098-4_7" @default.
- W3206946253 hasPublicationYear "2021" @default.
- W3206946253 type Work @default.
- W3206946253 sameAs 3206946253 @default.
- W3206946253 citedByCount "0" @default.
- W3206946253 crossrefType "book-chapter" @default.
- W3206946253 hasAuthorship W3206946253A5073832417 @default.
- W3206946253 hasAuthorship W3206946253A5081919424 @default.
- W3206946253 hasConcept C108583219 @default.
- W3206946253 hasConcept C11413529 @default.
- W3206946253 hasConcept C119857082 @default.
- W3206946253 hasConcept C121332964 @default.
- W3206946253 hasConcept C137019171 @default.
- W3206946253 hasConcept C154945302 @default.
- W3206946253 hasConcept C192576344 @default.
- W3206946253 hasConcept C199354608 @default.
- W3206946253 hasConcept C199360897 @default.
- W3206946253 hasConcept C27753989 @default.
- W3206946253 hasConcept C2779094486 @default.
- W3206946253 hasConcept C41008148 @default.
- W3206946253 hasConcept C51003876 @default.
- W3206946253 hasConcept C58053490 @default.
- W3206946253 hasConcept C62520636 @default.
- W3206946253 hasConcept C62641251 @default.
- W3206946253 hasConcept C80444323 @default.
- W3206946253 hasConcept C84114770 @default.
- W3206946253 hasConcept C96147967 @default.
- W3206946253 hasConceptScore W3206946253C108583219 @default.
- W3206946253 hasConceptScore W3206946253C11413529 @default.
- W3206946253 hasConceptScore W3206946253C119857082 @default.
- W3206946253 hasConceptScore W3206946253C121332964 @default.
- W3206946253 hasConceptScore W3206946253C137019171 @default.
- W3206946253 hasConceptScore W3206946253C154945302 @default.
- W3206946253 hasConceptScore W3206946253C192576344 @default.
- W3206946253 hasConceptScore W3206946253C199354608 @default.
- W3206946253 hasConceptScore W3206946253C199360897 @default.
- W3206946253 hasConceptScore W3206946253C27753989 @default.
- W3206946253 hasConceptScore W3206946253C2779094486 @default.
- W3206946253 hasConceptScore W3206946253C41008148 @default.
- W3206946253 hasConceptScore W3206946253C51003876 @default.
- W3206946253 hasConceptScore W3206946253C58053490 @default.
- W3206946253 hasConceptScore W3206946253C62520636 @default.
- W3206946253 hasConceptScore W3206946253C62641251 @default.
- W3206946253 hasConceptScore W3206946253C80444323 @default.
- W3206946253 hasConceptScore W3206946253C84114770 @default.
- W3206946253 hasConceptScore W3206946253C96147967 @default.
- W3206946253 hasLocation W32069462531 @default.
- W3206946253 hasOpenAccess W3206946253 @default.
- W3206946253 hasPrimaryLocation W32069462531 @default.
- W3206946253 hasRelatedWork W10287351 @default.
- W3206946253 hasRelatedWork W10392953 @default.
- W3206946253 hasRelatedWork W10410845 @default.
- W3206946253 hasRelatedWork W13214723 @default.