Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206974959> ?p ?o ?g. }
- W3206974959 endingPage "180" @default.
- W3206974959 startingPage "161" @default.
- W3206974959 abstract "Crop monitoring becomes essential in attaining food security for implementation of various agricultural serving programs. So, fast and reliable crop monitoring is must. Using traditional methods, crop monitoring maps need high amount of satellite data downloading and processing time. Google Earth Engine (GEE) cloud platform enables us to save time in downloading and processing of time series satellite data, the every satellite imagery is converted into Normalized Difference Vegetation Index (NDVI) image and stacked monthly wise maximum images. The stacked image was used for conducting supervised classification. The main objective of this study is to evaluate the performance of different supervised machine learning (ML) classifiers in GEE platform and Spectral Matching Technique (SMT) using Sentinel-2 10 m satellite imagery in specific crop type classification. The crop classification for the year 2018–19 (rabi season) was carried for Jhansi District using supervised classifiers like Random Forest (RF), Support Vector Machine (SVM) and Classification and Regression Trees (CART) in GEE platform and also with SMT with the help of ground data. It was attained nearly 81.8% accuracy for RF, 68.8% for SVM, 64.9% for CART and 88% for SMT. The results obtained using RF classifier were nearly relative to SMT classification map. The study indicates that classifier’s performance depends on the quality of ground data used, RF can reduce the error samples in ground samples and produce satisfactory results. This study compared results obtained from all the above classifiers with agricultural statistics and also compared crop-wise accuracies. In the study, it was observed that RF classification is outperformed when compared with other classifiers considered in the study." @default.
- W3206974959 created "2021-10-25" @default.
- W3206974959 creator A5014096050 @default.
- W3206974959 creator A5067530371 @default.
- W3206974959 creator A5084676540 @default.
- W3206974959 date "2021-10-12" @default.
- W3206974959 modified "2023-09-24" @default.
- W3206974959 title "Machine Learning Approaches and Sentinel-2 Data in Crop Type Mapping" @default.
- W3206974959 cites W1565635109 @default.
- W3206974959 cites W1964672965 @default.
- W3206974959 cites W1970687962 @default.
- W3206974959 cites W1981213426 @default.
- W3206974959 cites W1990269578 @default.
- W3206974959 cites W2035549557 @default.
- W3206974959 cites W2041570083 @default.
- W3206974959 cites W2042386716 @default.
- W3206974959 cites W2055248879 @default.
- W3206974959 cites W2075368648 @default.
- W3206974959 cites W2076186394 @default.
- W3206974959 cites W2076347632 @default.
- W3206974959 cites W209068112 @default.
- W3206974959 cites W2094708176 @default.
- W3206974959 cites W2111460811 @default.
- W3206974959 cites W2119566670 @default.
- W3206974959 cites W2124949171 @default.
- W3206974959 cites W2155289042 @default.
- W3206974959 cites W2156028150 @default.
- W3206974959 cites W2290326488 @default.
- W3206974959 cites W2307094448 @default.
- W3206974959 cites W2347192404 @default.
- W3206974959 cites W2493156582 @default.
- W3206974959 cites W2560167313 @default.
- W3206974959 cites W2592712793 @default.
- W3206974959 cites W2725897987 @default.
- W3206974959 cites W2745131289 @default.
- W3206974959 cites W2766727660 @default.
- W3206974959 cites W2767953525 @default.
- W3206974959 cites W2787186529 @default.
- W3206974959 cites W2793276707 @default.
- W3206974959 cites W2793327769 @default.
- W3206974959 cites W2802954847 @default.
- W3206974959 cites W2807393992 @default.
- W3206974959 cites W2885406917 @default.
- W3206974959 cites W2886775386 @default.
- W3206974959 cites W2900217217 @default.
- W3206974959 cites W2911964244 @default.
- W3206974959 cites W2946293204 @default.
- W3206974959 cites W2964258221 @default.
- W3206974959 cites W2989767070 @default.
- W3206974959 cites W2999398601 @default.
- W3206974959 cites W3037919372 @default.
- W3206974959 cites W3037944196 @default.
- W3206974959 cites W4239510810 @default.
- W3206974959 cites W612661449 @default.
- W3206974959 doi "https://doi.org/10.1007/978-981-16-5847-1_8" @default.
- W3206974959 hasPublicationYear "2021" @default.
- W3206974959 type Work @default.
- W3206974959 sameAs 3206974959 @default.
- W3206974959 citedByCount "1" @default.
- W3206974959 countsByYear W32069749592023 @default.
- W3206974959 crossrefType "book-chapter" @default.
- W3206974959 hasAuthorship W3206974959A5014096050 @default.
- W3206974959 hasAuthorship W3206974959A5067530371 @default.
- W3206974959 hasAuthorship W3206974959A5084676540 @default.
- W3206974959 hasConcept C111919701 @default.
- W3206974959 hasConcept C119857082 @default.
- W3206974959 hasConcept C12267149 @default.
- W3206974959 hasConcept C127413603 @default.
- W3206974959 hasConcept C146978453 @default.
- W3206974959 hasConcept C1549246 @default.
- W3206974959 hasConcept C154945302 @default.
- W3206974959 hasConcept C169258074 @default.
- W3206974959 hasConcept C18903297 @default.
- W3206974959 hasConcept C19269812 @default.
- W3206974959 hasConcept C205649164 @default.
- W3206974959 hasConcept C25989453 @default.
- W3206974959 hasConcept C41008148 @default.
- W3206974959 hasConcept C62649853 @default.
- W3206974959 hasConcept C71901391 @default.
- W3206974959 hasConcept C86803240 @default.
- W3206974959 hasConcept C95623464 @default.
- W3206974959 hasConceptScore W3206974959C111919701 @default.
- W3206974959 hasConceptScore W3206974959C119857082 @default.
- W3206974959 hasConceptScore W3206974959C12267149 @default.
- W3206974959 hasConceptScore W3206974959C127413603 @default.
- W3206974959 hasConceptScore W3206974959C146978453 @default.
- W3206974959 hasConceptScore W3206974959C1549246 @default.
- W3206974959 hasConceptScore W3206974959C154945302 @default.
- W3206974959 hasConceptScore W3206974959C169258074 @default.
- W3206974959 hasConceptScore W3206974959C18903297 @default.
- W3206974959 hasConceptScore W3206974959C19269812 @default.
- W3206974959 hasConceptScore W3206974959C205649164 @default.
- W3206974959 hasConceptScore W3206974959C25989453 @default.
- W3206974959 hasConceptScore W3206974959C41008148 @default.
- W3206974959 hasConceptScore W3206974959C62649853 @default.
- W3206974959 hasConceptScore W3206974959C71901391 @default.
- W3206974959 hasConceptScore W3206974959C86803240 @default.
- W3206974959 hasConceptScore W3206974959C95623464 @default.