Matches in SemOpenAlex for { <https://semopenalex.org/work/W3206977100> ?p ?o ?g. }
- W3206977100 endingPage "986" @default.
- W3206977100 startingPage "967" @default.
- W3206977100 abstract "Abstract The application of machine learning (ML) algorithms to address problems related to model-driven engineering (MDE) is currently hindered by the lack of curated datasets of software models. There are several reasons for this, including the lack of large collections of good quality models, the difficulty to label models due to the required domain expertise, and the relative immaturity of the application of ML to MDE. In this work, we present ModelSet , a labelled dataset of software models intended to enable the application of ML to address software modelling problems. To create it we have devised a method designed to facilitate the exploration and labelling of model datasets by interactively grouping similar models using off-the-shelf technologies like a search engine. We have built an Eclipse plug-in to support the labelling process, which we have used to label 5,466 Ecore meta-models and 5,120 UML models with its category as the main label plus additional secondary labels of interest. We have evaluated the ability of our labelling method to create meaningful groups of models in order to speed up the process, improving the effectiveness of classical clustering methods. We showcase the usefulness of the dataset by applying it in a real scenario: enhancing the MAR search engine. We use ModelSet to train models able to infer useful metadata to navigate search results. The dataset and the tooling are available at https://figshare.com/s/5a6c02fa8ed20782935c and a live version at http://modelset.github.io ." @default.
- W3206977100 created "2021-10-25" @default.
- W3206977100 creator A5008895111 @default.
- W3206977100 creator A5011891628 @default.
- W3206977100 creator A5056580832 @default.
- W3206977100 date "2021-10-17" @default.
- W3206977100 modified "2023-09-29" @default.
- W3206977100 title "ModelSet: a dataset for machine learning in model-driven engineering" @default.
- W3206977100 cites W1557933274 @default.
- W3206977100 cites W197609290 @default.
- W3206977100 cites W1977200413 @default.
- W3206977100 cites W2099119556 @default.
- W3206977100 cites W2108598243 @default.
- W3206977100 cites W2116272605 @default.
- W3206977100 cites W2118953835 @default.
- W3206977100 cites W2146241755 @default.
- W3206977100 cites W2156723666 @default.
- W3206977100 cites W2170903311 @default.
- W3206977100 cites W2463902528 @default.
- W3206977100 cites W2504056098 @default.
- W3206977100 cites W2524405402 @default.
- W3206977100 cites W2525725845 @default.
- W3206977100 cites W2537787699 @default.
- W3206977100 cites W2725411909 @default.
- W3206977100 cites W2740519124 @default.
- W3206977100 cites W2767441969 @default.
- W3206977100 cites W2786395545 @default.
- W3206977100 cites W2807625384 @default.
- W3206977100 cites W2883679541 @default.
- W3206977100 cites W2888012363 @default.
- W3206977100 cites W2888266080 @default.
- W3206977100 cites W2890508658 @default.
- W3206977100 cites W2895788995 @default.
- W3206977100 cites W2907705732 @default.
- W3206977100 cites W2921408465 @default.
- W3206977100 cites W2955339520 @default.
- W3206977100 cites W2955426500 @default.
- W3206977100 cites W2963617989 @default.
- W3206977100 cites W2963748441 @default.
- W3206977100 cites W2963935794 @default.
- W3206977100 cites W2964150020 @default.
- W3206977100 cites W2964194820 @default.
- W3206977100 cites W2979417040 @default.
- W3206977100 cites W2979531373 @default.
- W3206977100 cites W2990920816 @default.
- W3206977100 cites W3017201198 @default.
- W3206977100 cites W3031413657 @default.
- W3206977100 cites W3032192559 @default.
- W3206977100 cites W3043067853 @default.
- W3206977100 cites W3089878122 @default.
- W3206977100 cites W3097277235 @default.
- W3206977100 cites W3150055540 @default.
- W3206977100 cites W809341971 @default.
- W3206977100 doi "https://doi.org/10.1007/s10270-021-00929-3" @default.
- W3206977100 hasPublicationYear "2021" @default.
- W3206977100 type Work @default.
- W3206977100 sameAs 3206977100 @default.
- W3206977100 citedByCount "6" @default.
- W3206977100 countsByYear W32069771002022 @default.
- W3206977100 countsByYear W32069771002023 @default.
- W3206977100 crossrefType "journal-article" @default.
- W3206977100 hasAuthorship W3206977100A5008895111 @default.
- W3206977100 hasAuthorship W3206977100A5011891628 @default.
- W3206977100 hasAuthorship W3206977100A5056580832 @default.
- W3206977100 hasBestOaLocation W32069771001 @default.
- W3206977100 hasConcept C110326360 @default.
- W3206977100 hasConcept C115903868 @default.
- W3206977100 hasConcept C119857082 @default.
- W3206977100 hasConcept C121332964 @default.
- W3206977100 hasConcept C124101348 @default.
- W3206977100 hasConcept C1276947 @default.
- W3206977100 hasConcept C134306372 @default.
- W3206977100 hasConcept C136764020 @default.
- W3206977100 hasConcept C145644426 @default.
- W3206977100 hasConcept C153048206 @default.
- W3206977100 hasConcept C154945302 @default.
- W3206977100 hasConcept C199360897 @default.
- W3206977100 hasConcept C2777904410 @default.
- W3206977100 hasConcept C2778505590 @default.
- W3206977100 hasConcept C33923547 @default.
- W3206977100 hasConcept C36503486 @default.
- W3206977100 hasConcept C41008148 @default.
- W3206977100 hasConcept C4924752 @default.
- W3206977100 hasConcept C509989072 @default.
- W3206977100 hasConcept C73555534 @default.
- W3206977100 hasConcept C93518851 @default.
- W3206977100 hasConcept C98045186 @default.
- W3206977100 hasConceptScore W3206977100C110326360 @default.
- W3206977100 hasConceptScore W3206977100C115903868 @default.
- W3206977100 hasConceptScore W3206977100C119857082 @default.
- W3206977100 hasConceptScore W3206977100C121332964 @default.
- W3206977100 hasConceptScore W3206977100C124101348 @default.
- W3206977100 hasConceptScore W3206977100C1276947 @default.
- W3206977100 hasConceptScore W3206977100C134306372 @default.
- W3206977100 hasConceptScore W3206977100C136764020 @default.
- W3206977100 hasConceptScore W3206977100C145644426 @default.
- W3206977100 hasConceptScore W3206977100C153048206 @default.
- W3206977100 hasConceptScore W3206977100C154945302 @default.