Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207024320> ?p ?o ?g. }
- W3207024320 endingPage "100890" @default.
- W3207024320 startingPage "100890" @default.
- W3207024320 abstract "In this paper, we apply the Regge–Wheeler formalism in our study of axial and polar gravitational waves in Kantowski–Sachs universe. The background field equations and the linearised perturbation equations for axial and polar modes are derived in presence of matter. To find the analytical solutions, we analyse the propagation of waves in vacuum spacetime. The background field equations in absence of matter are first solved by assuming that the expansion scalar Θ to be proportional to the shear scalar σ (so that the metric coefficients are given by the relation a=bn, where n is an arbitrary constant). Using the method of separation of variables, the axial perturbation parameter h0(t,r) is obtained from its wave equation. The other perturbation h1(t,r) is then determined from h0(t,r). The anisotropy of the background spacetime is responsible for the damping of the axial waves. The polar perturbation equations are much more involved compared to their FLRW counterparts, as well as to the axial perturbations in Kantowski–Sachs background, and contain complicated couplings among the perturbation variables. In both the axial and polar cases, the radial and temporal solutions for the perturbations separate out as product. The temporal part of the polar perturbation solutions are plotted against time to obtain an order of magnitude estimate of the frequency of the propagating GWs, which is found to lie in the probable range of 1000–2000 Hz. Using standard observational data for the GW strain we have placed constraints on the parameters appearing in the polar perturbation solutions. The perturbation equations in presence of matter show that the axial waves can cause perturbations only in the azimuthal velocity of the fluid without deforming the matter field. But the polar waves must perturb the energy density, the pressure and also the non-azimuthal components of the fluid velocity. The propagation of axial and polar gravitational waves in Kantowski–Sachs and Bianchi I spacetimes is found to be more or less similar in nature." @default.
- W3207024320 created "2021-10-25" @default.
- W3207024320 creator A5071271724 @default.
- W3207024320 creator A5080692158 @default.
- W3207024320 date "2021-12-01" @default.
- W3207024320 modified "2023-10-09" @default.
- W3207024320 title "Propagation of axial and polar gravitational waves in Kantowski–Sachs universe" @default.
- W3207024320 cites W1833272106 @default.
- W3207024320 cites W1971919225 @default.
- W3207024320 cites W1972192986 @default.
- W3207024320 cites W1975458178 @default.
- W3207024320 cites W1978502511 @default.
- W3207024320 cites W1984851671 @default.
- W3207024320 cites W1988281968 @default.
- W3207024320 cites W2001541140 @default.
- W3207024320 cites W2010269859 @default.
- W3207024320 cites W2014827418 @default.
- W3207024320 cites W2018636308 @default.
- W3207024320 cites W2021578741 @default.
- W3207024320 cites W2023341373 @default.
- W3207024320 cites W2025409750 @default.
- W3207024320 cites W2029788031 @default.
- W3207024320 cites W2031088698 @default.
- W3207024320 cites W2035388539 @default.
- W3207024320 cites W2036897909 @default.
- W3207024320 cites W2036960816 @default.
- W3207024320 cites W2042760253 @default.
- W3207024320 cites W2044821817 @default.
- W3207024320 cites W2047330197 @default.
- W3207024320 cites W2054708802 @default.
- W3207024320 cites W2057907534 @default.
- W3207024320 cites W2074816531 @default.
- W3207024320 cites W2079100951 @default.
- W3207024320 cites W2083439135 @default.
- W3207024320 cites W2084312541 @default.
- W3207024320 cites W2087273370 @default.
- W3207024320 cites W2094250019 @default.
- W3207024320 cites W2104577309 @default.
- W3207024320 cites W2117802892 @default.
- W3207024320 cites W2128718137 @default.
- W3207024320 cites W2134384127 @default.
- W3207024320 cites W2157288362 @default.
- W3207024320 cites W2169912865 @default.
- W3207024320 cites W2170041426 @default.
- W3207024320 cites W2231773349 @default.
- W3207024320 cites W2304500859 @default.
- W3207024320 cites W2580277873 @default.
- W3207024320 cites W2611437953 @default.
- W3207024320 cites W2730002806 @default.
- W3207024320 cites W2890586784 @default.
- W3207024320 cites W2912829048 @default.
- W3207024320 cites W2981880777 @default.
- W3207024320 cites W3016419006 @default.
- W3207024320 cites W3036989776 @default.
- W3207024320 cites W3092382241 @default.
- W3207024320 cites W3096081332 @default.
- W3207024320 cites W3097203872 @default.
- W3207024320 cites W3098576385 @default.
- W3207024320 cites W3098947293 @default.
- W3207024320 cites W3100459348 @default.
- W3207024320 cites W3101149655 @default.
- W3207024320 cites W3101592863 @default.
- W3207024320 cites W3103957241 @default.
- W3207024320 cites W3104270852 @default.
- W3207024320 cites W3110921016 @default.
- W3207024320 cites W3125925571 @default.
- W3207024320 cites W3155657618 @default.
- W3207024320 cites W4231384122 @default.
- W3207024320 cites W4231659876 @default.
- W3207024320 cites W974345349 @default.
- W3207024320 doi "https://doi.org/10.1016/j.dark.2021.100890" @default.
- W3207024320 hasPublicationYear "2021" @default.
- W3207024320 type Work @default.
- W3207024320 sameAs 3207024320 @default.
- W3207024320 citedByCount "3" @default.
- W3207024320 countsByYear W32070243202022 @default.
- W3207024320 countsByYear W32070243202023 @default.
- W3207024320 crossrefType "journal-article" @default.
- W3207024320 hasAuthorship W3207024320A5071271724 @default.
- W3207024320 hasAuthorship W3207024320A5080692158 @default.
- W3207024320 hasBestOaLocation W32070243202 @default.
- W3207024320 hasConcept C110521144 @default.
- W3207024320 hasConcept C121332964 @default.
- W3207024320 hasConcept C124017977 @default.
- W3207024320 hasConcept C130187892 @default.
- W3207024320 hasConcept C177918212 @default.
- W3207024320 hasConcept C190330329 @default.
- W3207024320 hasConcept C29705727 @default.
- W3207024320 hasConcept C3079626 @default.
- W3207024320 hasConcept C30864177 @default.
- W3207024320 hasConcept C37914503 @default.
- W3207024320 hasConcept C44870925 @default.
- W3207024320 hasConcept C62520636 @default.
- W3207024320 hasConcept C74650414 @default.
- W3207024320 hasConcept C84999194 @default.
- W3207024320 hasConceptScore W3207024320C110521144 @default.
- W3207024320 hasConceptScore W3207024320C121332964 @default.
- W3207024320 hasConceptScore W3207024320C124017977 @default.