Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207056412> ?p ?o ?g. }
- W3207056412 endingPage "13" @default.
- W3207056412 startingPage "1" @default.
- W3207056412 abstract "This article uses cutting-edge deep learning technology to identify structural damage from images for a civil engineering application. The public infrastructures of the country are generally inspected physically by a visual evaluation by qualified inspectors. However, manual inspections are pretty time-consuming and often require too much labor. The number of experts capable of evaluating such structural damage is inadequate. As a result, computer vision-based techniques for automatic damage detection have been developed. This paper’s civil infrastructure damages are classified into four damages of roads common in Indian highways and the concrete deterioration in the bridges. The convolutional neural network has become a standard tool for organizing and recognizing images. In this paper, an ensemble of three CNN models is proposed, and two are transfer learning-based models. The proposed ensemble transfer learning model provided a validation accuracy of 87.1%." @default.
- W3207056412 created "2021-10-25" @default.
- W3207056412 creator A5012310919 @default.
- W3207056412 creator A5020425987 @default.
- W3207056412 creator A5025574838 @default.
- W3207056412 creator A5036514213 @default.
- W3207056412 creator A5040181089 @default.
- W3207056412 creator A5047058576 @default.
- W3207056412 creator A5083947709 @default.
- W3207056412 creator A5091375957 @default.
- W3207056412 date "2021-10-20" @default.
- W3207056412 modified "2023-09-26" @default.
- W3207056412 title "Identification of Civil Infrastructure Damage Using Ensemble Transfer Learning Model" @default.
- W3207056412 cites W1670272738 @default.
- W3207056412 cites W1978076826 @default.
- W3207056412 cites W2063178646 @default.
- W3207056412 cites W2080191943 @default.
- W3207056412 cites W2087119090 @default.
- W3207056412 cites W2163352987 @default.
- W3207056412 cites W2172941934 @default.
- W3207056412 cites W2586969017 @default.
- W3207056412 cites W2589490301 @default.
- W3207056412 cites W2598457882 @default.
- W3207056412 cites W2601221357 @default.
- W3207056412 cites W2618859419 @default.
- W3207056412 cites W2626688319 @default.
- W3207056412 cites W2794372970 @default.
- W3207056412 cites W2806229851 @default.
- W3207056412 cites W2898852399 @default.
- W3207056412 cites W2899242765 @default.
- W3207056412 cites W2899627945 @default.
- W3207056412 cites W2912236777 @default.
- W3207056412 cites W2913071089 @default.
- W3207056412 cites W2922073063 @default.
- W3207056412 cites W2945584839 @default.
- W3207056412 cites W2979915075 @default.
- W3207056412 cites W2991654349 @default.
- W3207056412 cites W3012350285 @default.
- W3207056412 cites W3110713756 @default.
- W3207056412 cites W3118796984 @default.
- W3207056412 cites W3119458634 @default.
- W3207056412 cites W3124942917 @default.
- W3207056412 cites W3135148600 @default.
- W3207056412 doi "https://doi.org/10.1155/2021/5589688" @default.
- W3207056412 hasPublicationYear "2021" @default.
- W3207056412 type Work @default.
- W3207056412 sameAs 3207056412 @default.
- W3207056412 citedByCount "1" @default.
- W3207056412 countsByYear W32070564122022 @default.
- W3207056412 crossrefType "journal-article" @default.
- W3207056412 hasAuthorship W3207056412A5012310919 @default.
- W3207056412 hasAuthorship W3207056412A5020425987 @default.
- W3207056412 hasAuthorship W3207056412A5025574838 @default.
- W3207056412 hasAuthorship W3207056412A5036514213 @default.
- W3207056412 hasAuthorship W3207056412A5040181089 @default.
- W3207056412 hasAuthorship W3207056412A5047058576 @default.
- W3207056412 hasAuthorship W3207056412A5083947709 @default.
- W3207056412 hasAuthorship W3207056412A5091375957 @default.
- W3207056412 hasBestOaLocation W32070564121 @default.
- W3207056412 hasConcept C108583219 @default.
- W3207056412 hasConcept C116834253 @default.
- W3207056412 hasConcept C119857082 @default.
- W3207056412 hasConcept C119898033 @default.
- W3207056412 hasConcept C150899416 @default.
- W3207056412 hasConcept C154945302 @default.
- W3207056412 hasConcept C162307627 @default.
- W3207056412 hasConcept C17744445 @default.
- W3207056412 hasConcept C199539241 @default.
- W3207056412 hasConcept C2777381055 @default.
- W3207056412 hasConcept C41008148 @default.
- W3207056412 hasConcept C45942800 @default.
- W3207056412 hasConcept C50644808 @default.
- W3207056412 hasConcept C59822182 @default.
- W3207056412 hasConcept C81363708 @default.
- W3207056412 hasConcept C86803240 @default.
- W3207056412 hasConceptScore W3207056412C108583219 @default.
- W3207056412 hasConceptScore W3207056412C116834253 @default.
- W3207056412 hasConceptScore W3207056412C119857082 @default.
- W3207056412 hasConceptScore W3207056412C119898033 @default.
- W3207056412 hasConceptScore W3207056412C150899416 @default.
- W3207056412 hasConceptScore W3207056412C154945302 @default.
- W3207056412 hasConceptScore W3207056412C162307627 @default.
- W3207056412 hasConceptScore W3207056412C17744445 @default.
- W3207056412 hasConceptScore W3207056412C199539241 @default.
- W3207056412 hasConceptScore W3207056412C2777381055 @default.
- W3207056412 hasConceptScore W3207056412C41008148 @default.
- W3207056412 hasConceptScore W3207056412C45942800 @default.
- W3207056412 hasConceptScore W3207056412C50644808 @default.
- W3207056412 hasConceptScore W3207056412C59822182 @default.
- W3207056412 hasConceptScore W3207056412C81363708 @default.
- W3207056412 hasConceptScore W3207056412C86803240 @default.
- W3207056412 hasLocation W32070564121 @default.
- W3207056412 hasLocation W32070564122 @default.
- W3207056412 hasOpenAccess W3207056412 @default.
- W3207056412 hasPrimaryLocation W32070564121 @default.
- W3207056412 hasRelatedWork W3100327638 @default.
- W3207056412 hasRelatedWork W3136979370 @default.
- W3207056412 hasRelatedWork W3162132941 @default.