Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207066721> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3207066721 endingPage "275" @default.
- W3207066721 startingPage "263" @default.
- W3207066721 abstract "Machine learning (ML) has recently been demonstrated to rival expert-level human accuracy in prediction and detection tasks in a variety of domains, including medicine. Despite these impressive findings, however, a key barrier to the full realization of ML’s potential in medical prognoses is technology acceptance. Recent efforts to produce explainable AI (XAI) have made progress in improving the interpretability of some ML models, but these efforts suffer from limitations intrinsic to their design: they work best at identifying why a system fails, but do poorly at explaining when and why a model’s prediction is correct. We posit that the acceptability of ML predictions in expert domains is limited by two key factors: the machine’s horizon of prediction that extends beyond human capability, and the inability for machine predictions to incorporate human intuition into their models. We propose the use of a novel ML architecture, Neural Ordinary Differential Equations (NODEs) to enhance human understanding and encourage acceptability. Our approach prioritizes human cognitive intuition at the center of the algorithm design, and offers a distribution of predictions rather than single outputs. We explain how this approach may significantly improve human-machine collaboration in prediction tasks in expert domains such as medical prognoses. We propose a model and demonstrate, by expanding a concrete example from the literature, how our model advances the vision of future hybrid human-AI systems." @default.
- W3207066721 created "2021-10-25" @default.
- W3207066721 creator A5031219354 @default.
- W3207066721 creator A5045980169 @default.
- W3207066721 creator A5050794495 @default.
- W3207066721 creator A5054459503 @default.
- W3207066721 creator A5085722559 @default.
- W3207066721 date "2021-10-08" @default.
- W3207066721 modified "2023-10-06" @default.
- W3207066721 title "Enhancing human-machine teaming for medical prognosis through neural ordinary differential equations (NODEs)" @default.
- W3207066721 cites W1815763400 @default.
- W3207066721 cites W1972119484 @default.
- W3207066721 cites W1984737313 @default.
- W3207066721 cites W1999455919 @default.
- W3207066721 cites W2054259479 @default.
- W3207066721 cites W2077877335 @default.
- W3207066721 cites W2080614756 @default.
- W3207066721 cites W2088017846 @default.
- W3207066721 cites W2096001350 @default.
- W3207066721 cites W2121732085 @default.
- W3207066721 cites W2129083496 @default.
- W3207066721 cites W2162187829 @default.
- W3207066721 cites W2170360109 @default.
- W3207066721 cites W2189355409 @default.
- W3207066721 cites W2579555219 @default.
- W3207066721 cites W2581082771 @default.
- W3207066721 cites W2835112099 @default.
- W3207066721 cites W2883723352 @default.
- W3207066721 cites W2885770726 @default.
- W3207066721 cites W2892099700 @default.
- W3207066721 cites W2903660960 @default.
- W3207066721 cites W2904509457 @default.
- W3207066721 cites W2981731882 @default.
- W3207066721 cites W3004227146 @default.
- W3207066721 cites W3040804562 @default.
- W3207066721 cites W3082867365 @default.
- W3207066721 cites W3107497459 @default.
- W3207066721 cites W3123227215 @default.
- W3207066721 cites W3150522209 @default.
- W3207066721 cites W3155616944 @default.
- W3207066721 cites W4238998169 @default.
- W3207066721 doi "https://doi.org/10.1007/s42454-021-00037-z" @default.
- W3207066721 hasPublicationYear "2021" @default.
- W3207066721 type Work @default.
- W3207066721 sameAs 3207066721 @default.
- W3207066721 citedByCount "3" @default.
- W3207066721 countsByYear W32070667212021 @default.
- W3207066721 countsByYear W32070667212022 @default.
- W3207066721 crossrefType "journal-article" @default.
- W3207066721 hasAuthorship W3207066721A5031219354 @default.
- W3207066721 hasAuthorship W3207066721A5045980169 @default.
- W3207066721 hasAuthorship W3207066721A5050794495 @default.
- W3207066721 hasAuthorship W3207066721A5054459503 @default.
- W3207066721 hasAuthorship W3207066721A5085722559 @default.
- W3207066721 hasBestOaLocation W32070667211 @default.
- W3207066721 hasConcept C119857082 @default.
- W3207066721 hasConcept C132010649 @default.
- W3207066721 hasConcept C154945302 @default.
- W3207066721 hasConcept C15744967 @default.
- W3207066721 hasConcept C188147891 @default.
- W3207066721 hasConcept C26517878 @default.
- W3207066721 hasConcept C2781067378 @default.
- W3207066721 hasConcept C38652104 @default.
- W3207066721 hasConcept C41008148 @default.
- W3207066721 hasConcept C50644808 @default.
- W3207066721 hasConceptScore W3207066721C119857082 @default.
- W3207066721 hasConceptScore W3207066721C132010649 @default.
- W3207066721 hasConceptScore W3207066721C154945302 @default.
- W3207066721 hasConceptScore W3207066721C15744967 @default.
- W3207066721 hasConceptScore W3207066721C188147891 @default.
- W3207066721 hasConceptScore W3207066721C26517878 @default.
- W3207066721 hasConceptScore W3207066721C2781067378 @default.
- W3207066721 hasConceptScore W3207066721C38652104 @default.
- W3207066721 hasConceptScore W3207066721C41008148 @default.
- W3207066721 hasConceptScore W3207066721C50644808 @default.
- W3207066721 hasFunder F4320338298 @default.
- W3207066721 hasIssue "4" @default.
- W3207066721 hasLocation W32070667211 @default.
- W3207066721 hasLocation W32070667212 @default.
- W3207066721 hasOpenAccess W3207066721 @default.
- W3207066721 hasPrimaryLocation W32070667211 @default.
- W3207066721 hasRelatedWork W3006943036 @default.
- W3207066721 hasRelatedWork W3126629909 @default.
- W3207066721 hasRelatedWork W3207066721 @default.
- W3207066721 hasRelatedWork W4200511449 @default.
- W3207066721 hasRelatedWork W4206534706 @default.
- W3207066721 hasRelatedWork W4229079080 @default.
- W3207066721 hasRelatedWork W4299487748 @default.
- W3207066721 hasRelatedWork W4385957992 @default.
- W3207066721 hasRelatedWork W4385965371 @default.
- W3207066721 hasRelatedWork W4386025632 @default.
- W3207066721 hasVolume "3" @default.
- W3207066721 isParatext "false" @default.
- W3207066721 isRetracted "false" @default.
- W3207066721 magId "3207066721" @default.
- W3207066721 workType "article" @default.