Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207118095> ?p ?o ?g. }
- W3207118095 abstract "Survival analysis is a critical tool for the modelling of time-to-event data, such as life expectancy after a cancer diagnosis or optimal maintenance scheduling for complex machinery. However, current neural network models provide an imperfect solution for survival analysis as they either restrict the shape of the target probability distribution or restrict the estimation to pre-determined times. As a consequence, current survival neural networks lack the ability to estimate a generic function without prior knowledge of its structure. In this article, we present the metaparametric neural network framework that encompasses existing survival analysis methods and enables their extension to solve the aforementioned issues. This framework allows survival neural networks to satisfy the same independence of generic function estimation from the underlying data structure that characterizes their regression and classification counterparts. Further, we demonstrate the application of the metaparametric framework using both simulated and large real-world datasets and show that it outperforms the current state-of-the-art methods in (i) capturing nonlinearities, and (ii) identifying temporal patterns, leading to more accurate overall estimations whilst placing no restrictions on the underlying function structure." @default.
- W3207118095 created "2021-10-25" @default.
- W3207118095 creator A5000782759 @default.
- W3207118095 creator A5005962865 @default.
- W3207118095 creator A5085942306 @default.
- W3207118095 date "2021-10-13" @default.
- W3207118095 modified "2023-09-27" @default.
- W3207118095 title "Metaparametric Neural Networks for Survival Analysis" @default.
- W3207118095 cites W1580788756 @default.
- W3207118095 cites W1689711448 @default.
- W3207118095 cites W1860392020 @default.
- W3207118095 cites W1972476693 @default.
- W3207118095 cites W1975286873 @default.
- W3207118095 cites W1979300931 @default.
- W3207118095 cites W1985516812 @default.
- W3207118095 cites W2014315605 @default.
- W3207118095 cites W2016525917 @default.
- W3207118095 cites W2020628257 @default.
- W3207118095 cites W2038981426 @default.
- W3207118095 cites W2041055738 @default.
- W3207118095 cites W2042311265 @default.
- W3207118095 cites W2059864409 @default.
- W3207118095 cites W2083972068 @default.
- W3207118095 cites W2088239637 @default.
- W3207118095 cites W2089947415 @default.
- W3207118095 cites W2095705004 @default.
- W3207118095 cites W2102886298 @default.
- W3207118095 cites W2108673310 @default.
- W3207118095 cites W2113820091 @default.
- W3207118095 cites W2135369095 @default.
- W3207118095 cites W2154987621 @default.
- W3207118095 cites W2171720857 @default.
- W3207118095 cites W2301541953 @default.
- W3207118095 cites W2323458614 @default.
- W3207118095 cites W2328926651 @default.
- W3207118095 cites W2509991828 @default.
- W3207118095 cites W2518539007 @default.
- W3207118095 cites W2522051365 @default.
- W3207118095 cites W2571620227 @default.
- W3207118095 cites W2753919178 @default.
- W3207118095 cites W2760813174 @default.
- W3207118095 cites W2788015390 @default.
- W3207118095 cites W2789172526 @default.
- W3207118095 cites W2808165349 @default.
- W3207118095 cites W2884367402 @default.
- W3207118095 cites W2911328536 @default.
- W3207118095 cites W2952100957 @default.
- W3207118095 cites W2963224605 @default.
- W3207118095 cites W2963246719 @default.
- W3207118095 cites W2963264509 @default.
- W3207118095 cites W2963678809 @default.
- W3207118095 cites W3094542430 @default.
- W3207118095 cites W3124477510 @default.
- W3207118095 cites W3132313785 @default.
- W3207118095 cites W3167198381 @default.
- W3207118095 cites W75245760 @default.
- W3207118095 hasPublicationYear "2021" @default.
- W3207118095 type Work @default.
- W3207118095 sameAs 3207118095 @default.
- W3207118095 citedByCount "0" @default.
- W3207118095 crossrefType "posted-content" @default.
- W3207118095 hasAuthorship W3207118095A5000782759 @default.
- W3207118095 hasAuthorship W3207118095A5005962865 @default.
- W3207118095 hasAuthorship W3207118095A5085942306 @default.
- W3207118095 hasConcept C10515644 @default.
- W3207118095 hasConcept C105795698 @default.
- W3207118095 hasConcept C119857082 @default.
- W3207118095 hasConcept C124101348 @default.
- W3207118095 hasConcept C138885662 @default.
- W3207118095 hasConcept C14036430 @default.
- W3207118095 hasConcept C154945302 @default.
- W3207118095 hasConcept C2780310539 @default.
- W3207118095 hasConcept C33923547 @default.
- W3207118095 hasConcept C35651441 @default.
- W3207118095 hasConcept C41008148 @default.
- W3207118095 hasConcept C41895202 @default.
- W3207118095 hasConcept C42600057 @default.
- W3207118095 hasConcept C50644808 @default.
- W3207118095 hasConcept C78458016 @default.
- W3207118095 hasConcept C83546350 @default.
- W3207118095 hasConcept C86803240 @default.
- W3207118095 hasConceptScore W3207118095C10515644 @default.
- W3207118095 hasConceptScore W3207118095C105795698 @default.
- W3207118095 hasConceptScore W3207118095C119857082 @default.
- W3207118095 hasConceptScore W3207118095C124101348 @default.
- W3207118095 hasConceptScore W3207118095C138885662 @default.
- W3207118095 hasConceptScore W3207118095C14036430 @default.
- W3207118095 hasConceptScore W3207118095C154945302 @default.
- W3207118095 hasConceptScore W3207118095C2780310539 @default.
- W3207118095 hasConceptScore W3207118095C33923547 @default.
- W3207118095 hasConceptScore W3207118095C35651441 @default.
- W3207118095 hasConceptScore W3207118095C41008148 @default.
- W3207118095 hasConceptScore W3207118095C41895202 @default.
- W3207118095 hasConceptScore W3207118095C42600057 @default.
- W3207118095 hasConceptScore W3207118095C50644808 @default.
- W3207118095 hasConceptScore W3207118095C78458016 @default.
- W3207118095 hasConceptScore W3207118095C83546350 @default.
- W3207118095 hasConceptScore W3207118095C86803240 @default.
- W3207118095 hasLocation W32071180951 @default.
- W3207118095 hasOpenAccess W3207118095 @default.