Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207142974> ?p ?o ?g. }
- W3207142974 endingPage "e25497" @default.
- W3207142974 startingPage "e25497" @default.
- W3207142974 abstract "Web-based health care content has emerged as a primary source for patients to access health information without direct guidance from health care providers. The benefit of this approach is dependent on the ability of patients to access engaging high-quality information, but significant variability in the quality of web-based information often forces patients to navigate large quantities of inaccurate, incomplete, irrelevant, or inaccessible content. Personalization positions the patient at the center of health care models by considering their needs, preferences, goals, and values. However, the traditional methods used thus far in health care to determine the factors of high-quality content for a particular user are insufficient. Machine learning (ML) uses algorithms to process and uncover patterns within large volumes of data to develop predictive models that automatically improve over time. The health care sector has lagged behind other industries in implementing ML to analyze user and content features, which can automate personalized content recommendations on a mass scale. With the advent of big data in health care, which builds comprehensive patient profiles drawn from several disparate sources, ML can be used to integrate structured and unstructured data from users and content to deliver content that is predicted to be effective and engaging for patients. This enables patients to engage in their health and support education, self-management, and positive behavior change as well as to enhance clinical outcomes." @default.
- W3207142974 created "2021-10-25" @default.
- W3207142974 creator A5054825050 @default.
- W3207142974 creator A5058163838 @default.
- W3207142974 creator A5063057837 @default.
- W3207142974 creator A5066527035 @default.
- W3207142974 date "2021-10-19" @default.
- W3207142974 modified "2023-10-18" @default.
- W3207142974 title "Harnessing Machine Learning to Personalize Web-Based Health Care Content" @default.
- W3207142974 cites W1571486030 @default.
- W3207142974 cites W1866964640 @default.
- W3207142974 cites W1964730999 @default.
- W3207142974 cites W1967676062 @default.
- W3207142974 cites W1967928398 @default.
- W3207142974 cites W1969656025 @default.
- W3207142974 cites W1988331304 @default.
- W3207142974 cites W1991032455 @default.
- W3207142974 cites W1991132102 @default.
- W3207142974 cites W1991313119 @default.
- W3207142974 cites W1995039629 @default.
- W3207142974 cites W2004869973 @default.
- W3207142974 cites W2017687165 @default.
- W3207142974 cites W2027118951 @default.
- W3207142974 cites W2027731328 @default.
- W3207142974 cites W2030304510 @default.
- W3207142974 cites W2032609839 @default.
- W3207142974 cites W2032816933 @default.
- W3207142974 cites W2037351199 @default.
- W3207142974 cites W2040367556 @default.
- W3207142974 cites W2048308585 @default.
- W3207142974 cites W2049487316 @default.
- W3207142974 cites W2053285654 @default.
- W3207142974 cites W2057043446 @default.
- W3207142974 cites W2057902960 @default.
- W3207142974 cites W2058399165 @default.
- W3207142974 cites W2061474427 @default.
- W3207142974 cites W2076326483 @default.
- W3207142974 cites W2079836996 @default.
- W3207142974 cites W2083578140 @default.
- W3207142974 cites W2087134329 @default.
- W3207142974 cites W2088203220 @default.
- W3207142974 cites W2097584193 @default.
- W3207142974 cites W2104959792 @default.
- W3207142974 cites W2114297508 @default.
- W3207142974 cites W2116194568 @default.
- W3207142974 cites W2120751691 @default.
- W3207142974 cites W2124713896 @default.
- W3207142974 cites W2126563661 @default.
- W3207142974 cites W2127225900 @default.
- W3207142974 cites W2136322570 @default.
- W3207142974 cites W2137972009 @default.
- W3207142974 cites W2145225199 @default.
- W3207142974 cites W2150943872 @default.
- W3207142974 cites W2159094788 @default.
- W3207142974 cites W2159318017 @default.
- W3207142974 cites W2163068962 @default.
- W3207142974 cites W2164531150 @default.
- W3207142974 cites W2165234809 @default.
- W3207142974 cites W2168117362 @default.
- W3207142974 cites W2205389775 @default.
- W3207142974 cites W2210543184 @default.
- W3207142974 cites W2315382271 @default.
- W3207142974 cites W2505897098 @default.
- W3207142974 cites W2520441859 @default.
- W3207142974 cites W2591340154 @default.
- W3207142974 cites W2750434199 @default.
- W3207142974 cites W2766539423 @default.
- W3207142974 cites W2784070037 @default.
- W3207142974 cites W2803775299 @default.
- W3207142974 cites W2808573650 @default.
- W3207142974 cites W2809078379 @default.
- W3207142974 cites W2888267224 @default.
- W3207142974 cites W2900732843 @default.
- W3207142974 cites W2902673021 @default.
- W3207142974 cites W2903777941 @default.
- W3207142974 cites W2911877344 @default.
- W3207142974 cites W2915676182 @default.
- W3207142974 cites W2966325889 @default.
- W3207142974 cites W2972211076 @default.
- W3207142974 cites W2972720983 @default.
- W3207142974 cites W2974948251 @default.
- W3207142974 cites W3010915681 @default.
- W3207142974 cites W3030118432 @default.
- W3207142974 cites W3034958104 @default.
- W3207142974 cites W3037689415 @default.
- W3207142974 cites W3042933272 @default.
- W3207142974 cites W3090482705 @default.
- W3207142974 cites W3093861859 @default.
- W3207142974 cites W3123788518 @default.
- W3207142974 cites W4230457987 @default.
- W3207142974 cites W4233293307 @default.
- W3207142974 cites W4235507236 @default.
- W3207142974 cites W786102430 @default.
- W3207142974 cites W990057043 @default.
- W3207142974 doi "https://doi.org/10.2196/25497" @default.
- W3207142974 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8564651" @default.
- W3207142974 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34665146" @default.
- W3207142974 hasPublicationYear "2021" @default.