Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207165578> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3207165578 endingPage "e1362" @default.
- W3207165578 startingPage "e1354" @default.
- W3207165578 abstract "ABSTRACT Introduction The Office of Naval Research sponsored the Blast Load Assessment-Sense and Test program to develop a rapid, in-field solution that could be used by team leaders, commanders, and medical personnel to make science-based stand-down decisions for service members exposed to blast overpressure. However, a critical challenge to this goal was the reliable interpretation of surface pressure data collected by body-worn blast sensors in both combat and combat training scenarios. Without an appropriate standardized metric, exposures from different blast events cannot be compared and accumulated in a service member’s unique blast exposure profile. In response to these challenges, we developed the Fast Automated Signal Transformation, or FAST, algorithm to automate the processing of large amounts of pressure–time data collected by blast sensors and provide a rapid, reliable approximation of the incident blast parameters without user intervention. This paper describes the performance of the FAST algorithms developed to approximate incident blast metrics from high-explosive sources using only data from body-mounted blast sensors. Methods and Materials Incident pressure was chosen as the standardized output metric because it provides a physiologically relevant estimate of the exposure to blast that can be compared across multiple events. In addition, incident pressure serves as an ideal metric because it is not directionally dependent or affected by the orientation of the operator. The FAST algorithms also preprocess data and automatically flag “not real” traces that might not be from blasts events (false positives). Elimination of any “not real” blast waveforms is essential to avoid skewing the results of subsequent analyses. To evaluate the performance of the FAST algorithms, the FAST results were compared to (1) experimentally measured pressures and (2) results from high-fidelity numerical simulations for three representative real-world events. Results The FAST results were in good agreement with both experimental data and high-fidelity simulations for the three case studies analyzed. The first case study evaluated the performance of FAST with respect to body shielding. The predicted incident pressure by FAST for a surrogate facing the charge, side on to charge, and facing away from the charge was examined. The second case study evaluated the performance of FAST with respect to an irregular charge compared to both pressure probes and results from high-fidelity simulations. The third case study demonstrated the utility of FAST for detonations inside structures where reflections from nearby surfaces can significantly alter the incident pressure. Overall, FAST predictions accounted for the reflections, providing a pressure estimate typically within 20% of the anticipated value. Conclusions This paper presents a standardized approach—the FAST algorithms—to analyze body-mounted blast sensor data. FAST algorithms account for the effects of shock interactions with the body to produce an estimate of incident blast conditions, allowing for direct comparison of individual exposure from different blast events. The continuing development of FAST algorithms will include heavy weapons, providing a singular capability to rapidly interpret body-worn sensor data, and provide standard output for analysis of an individual’s unique blast exposure profile." @default.
- W3207165578 created "2021-10-25" @default.
- W3207165578 creator A5010977215 @default.
- W3207165578 creator A5020896423 @default.
- W3207165578 creator A5050244088 @default.
- W3207165578 creator A5063548850 @default.
- W3207165578 creator A5069258280 @default.
- W3207165578 creator A5080294378 @default.
- W3207165578 creator A5052532019 @default.
- W3207165578 date "2021-10-09" @default.
- W3207165578 modified "2023-09-27" @default.
- W3207165578 title "Development of a Fast-Running Algorithm to Approximate Incident Blast Parameters Using Body-Mounted Sensor Measurements" @default.
- W3207165578 cites W2002351770 @default.
- W3207165578 cites W2030673589 @default.
- W3207165578 cites W2169828275 @default.
- W3207165578 cites W2315901829 @default.
- W3207165578 cites W2377661981 @default.
- W3207165578 cites W2758638597 @default.
- W3207165578 cites W2962155483 @default.
- W3207165578 cites W2968680433 @default.
- W3207165578 cites W3008593858 @default.
- W3207165578 cites W4234739722 @default.
- W3207165578 cites W4297399213 @default.
- W3207165578 doi "https://doi.org/10.1093/milmed/usab411" @default.
- W3207165578 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34626472" @default.
- W3207165578 hasPublicationYear "2021" @default.
- W3207165578 type Work @default.
- W3207165578 sameAs 3207165578 @default.
- W3207165578 citedByCount "2" @default.
- W3207165578 countsByYear W32071655782022 @default.
- W3207165578 countsByYear W32071655782023 @default.
- W3207165578 crossrefType "journal-article" @default.
- W3207165578 hasAuthorship W3207165578A5010977215 @default.
- W3207165578 hasAuthorship W3207165578A5020896423 @default.
- W3207165578 hasAuthorship W3207165578A5050244088 @default.
- W3207165578 hasAuthorship W3207165578A5052532019 @default.
- W3207165578 hasAuthorship W3207165578A5063548850 @default.
- W3207165578 hasAuthorship W3207165578A5069258280 @default.
- W3207165578 hasAuthorship W3207165578A5080294378 @default.
- W3207165578 hasBestOaLocation W32071655781 @default.
- W3207165578 hasConcept C11413529 @default.
- W3207165578 hasConcept C121332964 @default.
- W3207165578 hasConcept C124101348 @default.
- W3207165578 hasConcept C127413603 @default.
- W3207165578 hasConcept C176217482 @default.
- W3207165578 hasConcept C21547014 @default.
- W3207165578 hasConcept C29452850 @default.
- W3207165578 hasConcept C41008148 @default.
- W3207165578 hasConcept C79403827 @default.
- W3207165578 hasConcept C97355855 @default.
- W3207165578 hasConceptScore W3207165578C11413529 @default.
- W3207165578 hasConceptScore W3207165578C121332964 @default.
- W3207165578 hasConceptScore W3207165578C124101348 @default.
- W3207165578 hasConceptScore W3207165578C127413603 @default.
- W3207165578 hasConceptScore W3207165578C176217482 @default.
- W3207165578 hasConceptScore W3207165578C21547014 @default.
- W3207165578 hasConceptScore W3207165578C29452850 @default.
- W3207165578 hasConceptScore W3207165578C41008148 @default.
- W3207165578 hasConceptScore W3207165578C79403827 @default.
- W3207165578 hasConceptScore W3207165578C97355855 @default.
- W3207165578 hasIssue "11-12" @default.
- W3207165578 hasLocation W32071655781 @default.
- W3207165578 hasLocation W32071655782 @default.
- W3207165578 hasOpenAccess W3207165578 @default.
- W3207165578 hasPrimaryLocation W32071655781 @default.
- W3207165578 hasRelatedWork W2347219288 @default.
- W3207165578 hasRelatedWork W2348097614 @default.
- W3207165578 hasRelatedWork W2351491280 @default.
- W3207165578 hasRelatedWork W2361197207 @default.
- W3207165578 hasRelatedWork W2371447506 @default.
- W3207165578 hasRelatedWork W2386767533 @default.
- W3207165578 hasRelatedWork W266446692 @default.
- W3207165578 hasRelatedWork W2795913521 @default.
- W3207165578 hasRelatedWork W2991626910 @default.
- W3207165578 hasRelatedWork W303980170 @default.
- W3207165578 hasVolume "187" @default.
- W3207165578 isParatext "false" @default.
- W3207165578 isRetracted "false" @default.
- W3207165578 magId "3207165578" @default.
- W3207165578 workType "article" @default.