Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207202955> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3207202955 endingPage "8" @default.
- W3207202955 startingPage "1" @default.
- W3207202955 abstract "There was an investigation of the diagnostic and prognostic effect of magnetic resonance imaging (MRI) based on multimodal feature fusion algorithm for impotence of perianal abscess. In this study, the second to fifth convolution blocks of the visual geometric group network were applied to extract the depth features in the way of transfer learning, and a multimode feature fusion algorithm was constructed. The whole network was trained by maximizing the energy proportion of the feature layers, which was compared with the fully convolutional neural network (FCN) algorithm. Then, this algorithm was adopted to the imaging diagnosis of 50 patients with anorectal diseases admitted to our hospital, and it was found that the similarity coefficient (85.37%), accuracy (80.02%), and recall rate (79.38%) of the improved deep learning algorithm were higher markedly than those of the FCN algorithm (70.18%, 67.82%, and 66.92%) (P < 0.05). As the number of convolutional layers increased, the segmentation accuracy of the convolutional neural network (CNN) algorithm was also improved. The detection rate of the observation group (84%) rose hugely compared with the control group (64%), and the difference was statistically obvious (P < 0.05). Besides, the detection accuracy of abscess location (84%), impotent tract location (80%), and internal orifice location (92%) in patients from the observation group was higher substantially than the accuracy of abscess location (60%), impotent tract location (68%), and internal orifice location (72%) from the control group (P < 0.05). In conclusion, the performance of the multimodal feature fusion algorithm was better, and the MRI image feature analysis based on this algorithm had a higher diagnostic accuracy, which had a positive effect on improving the detection rate, detection accuracy, and disease classification." @default.
- W3207202955 created "2021-10-25" @default.
- W3207202955 creator A5028242565 @default.
- W3207202955 creator A5055362289 @default.
- W3207202955 creator A5087140428 @default.
- W3207202955 date "2021-10-22" @default.
- W3207202955 modified "2023-10-14" @default.
- W3207202955 title "Deep Learning-Based Magnetic Resonance Imaging Features in Diagnosis of Perianal Abscess and Fistula Formation" @default.
- W3207202955 cites W1968608188 @default.
- W3207202955 cites W2326860762 @default.
- W3207202955 cites W2478193138 @default.
- W3207202955 cites W2484728463 @default.
- W3207202955 cites W2550898308 @default.
- W3207202955 cites W2603347423 @default.
- W3207202955 cites W2742311423 @default.
- W3207202955 cites W2797763839 @default.
- W3207202955 cites W2883837659 @default.
- W3207202955 cites W2906598409 @default.
- W3207202955 cites W2941555836 @default.
- W3207202955 cites W2952846726 @default.
- W3207202955 cites W2964270128 @default.
- W3207202955 cites W2979371270 @default.
- W3207202955 cites W2992884775 @default.
- W3207202955 cites W3017961305 @default.
- W3207202955 cites W3087595179 @default.
- W3207202955 cites W3106417893 @default.
- W3207202955 cites W3116465072 @default.
- W3207202955 cites W3177989452 @default.
- W3207202955 doi "https://doi.org/10.1155/2021/9066128" @default.
- W3207202955 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8556134" @default.
- W3207202955 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34776805" @default.
- W3207202955 hasPublicationYear "2021" @default.
- W3207202955 type Work @default.
- W3207202955 sameAs 3207202955 @default.
- W3207202955 citedByCount "3" @default.
- W3207202955 countsByYear W32072029552022 @default.
- W3207202955 crossrefType "journal-article" @default.
- W3207202955 hasAuthorship W3207202955A5028242565 @default.
- W3207202955 hasAuthorship W3207202955A5055362289 @default.
- W3207202955 hasAuthorship W3207202955A5087140428 @default.
- W3207202955 hasBestOaLocation W32072029551 @default.
- W3207202955 hasConcept C126838900 @default.
- W3207202955 hasConcept C138885662 @default.
- W3207202955 hasConcept C141071460 @default.
- W3207202955 hasConcept C143409427 @default.
- W3207202955 hasConcept C153180895 @default.
- W3207202955 hasConcept C154945302 @default.
- W3207202955 hasConcept C2776401178 @default.
- W3207202955 hasConcept C2777035434 @default.
- W3207202955 hasConcept C41008148 @default.
- W3207202955 hasConcept C41895202 @default.
- W3207202955 hasConcept C71924100 @default.
- W3207202955 hasConcept C81363708 @default.
- W3207202955 hasConcept C89600930 @default.
- W3207202955 hasConceptScore W3207202955C126838900 @default.
- W3207202955 hasConceptScore W3207202955C138885662 @default.
- W3207202955 hasConceptScore W3207202955C141071460 @default.
- W3207202955 hasConceptScore W3207202955C143409427 @default.
- W3207202955 hasConceptScore W3207202955C153180895 @default.
- W3207202955 hasConceptScore W3207202955C154945302 @default.
- W3207202955 hasConceptScore W3207202955C2776401178 @default.
- W3207202955 hasConceptScore W3207202955C2777035434 @default.
- W3207202955 hasConceptScore W3207202955C41008148 @default.
- W3207202955 hasConceptScore W3207202955C41895202 @default.
- W3207202955 hasConceptScore W3207202955C71924100 @default.
- W3207202955 hasConceptScore W3207202955C81363708 @default.
- W3207202955 hasConceptScore W3207202955C89600930 @default.
- W3207202955 hasLocation W32072029551 @default.
- W3207202955 hasLocation W32072029552 @default.
- W3207202955 hasLocation W32072029553 @default.
- W3207202955 hasLocation W32072029554 @default.
- W3207202955 hasOpenAccess W3207202955 @default.
- W3207202955 hasPrimaryLocation W32072029551 @default.
- W3207202955 hasRelatedWork W2760085659 @default.
- W3207202955 hasRelatedWork W2769435486 @default.
- W3207202955 hasRelatedWork W2994948129 @default.
- W3207202955 hasRelatedWork W3081496756 @default.
- W3207202955 hasRelatedWork W3093612317 @default.
- W3207202955 hasRelatedWork W3095523211 @default.
- W3207202955 hasRelatedWork W3102253946 @default.
- W3207202955 hasRelatedWork W3148584990 @default.
- W3207202955 hasRelatedWork W4200528772 @default.
- W3207202955 hasRelatedWork W4293211451 @default.
- W3207202955 hasVolume "2021" @default.
- W3207202955 isParatext "false" @default.
- W3207202955 isRetracted "false" @default.
- W3207202955 magId "3207202955" @default.
- W3207202955 workType "article" @default.