Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207231411> ?p ?o ?g. }
- W3207231411 endingPage "1768" @default.
- W3207231411 startingPage "1756" @default.
- W3207231411 abstract "Habitat selection studies are designed to generate predictions of species distributions or inference regarding general habitat associations and individual variation in habitat use. Such studies frequently involve either individually indexed locations gathered across limited spatial extents and analyzed using resource selection functions (RSFs) or spatially extensive locational data without individual resolution typically analyzed using species distribution models. Both analytical methodologies have certain desirable features, but analyses that combine individual- and population-level inference with flexible non-linear functions may provide improved predictions while accounting for individual variation. Here, we describe how RSFs can be fit using hierarchical generalized additive models (HGAMs) using widely available software, providing a means to explore individual variation in habitat associations and to generate species distribution maps. We used GPS tracking data from golden eagles Aquila chrysaetos from across eastern North America with four environmental predictors to generate monthly distribution models. We considered three model structures that assumed different amounts of individual variation in the functional relationship between predictors and habitat use and used k-fold cross-validation to compare model performance. Models accounting for individual variability in shape and smoothness of functional responses performed best. Eagles exhibited the least amount of individual variation in response to land cover variables during winter months, with most individuals more closely adhering to the population-level trend. During the summer months, eagles exhibited more substantial individual variation in shape and smoothness of the functional relationships, suggesting some need to account for individual variation in eagle habitat use for both inferential and predictive purposes, during this time of year. Because they allow users to blend flexible functions with random effects structures and are well-supported by a variety of software platforms, we believe that HGAMs provide a useful addition to the suite of analyses used for modeling habitat associations or predicting species distributions." @default.
- W3207231411 created "2021-10-25" @default.
- W3207231411 creator A5005316379 @default.
- W3207231411 creator A5008708879 @default.
- W3207231411 creator A5020107726 @default.
- W3207231411 creator A5023125955 @default.
- W3207231411 creator A5024981545 @default.
- W3207231411 creator A5030865094 @default.
- W3207231411 creator A5037138843 @default.
- W3207231411 creator A5041433242 @default.
- W3207231411 creator A5046135844 @default.
- W3207231411 creator A5051331822 @default.
- W3207231411 creator A5062325542 @default.
- W3207231411 creator A5062559430 @default.
- W3207231411 creator A5066350746 @default.
- W3207231411 creator A5074521837 @default.
- W3207231411 creator A5077450099 @default.
- W3207231411 creator A5082589284 @default.
- W3207231411 creator A5084104908 @default.
- W3207231411 creator A5086158440 @default.
- W3207231411 creator A5091809840 @default.
- W3207231411 date "2021-10-19" @default.
- W3207231411 modified "2023-10-02" @default.
- W3207231411 title "Resource selection functions based on hierarchical generalized additive models provide new insights into individual animal variation and species distributions" @default.
- W3207231411 cites W1565238527 @default.
- W3207231411 cites W1583708792 @default.
- W3207231411 cites W1917345938 @default.
- W3207231411 cites W1918281512 @default.
- W3207231411 cites W1966811787 @default.
- W3207231411 cites W1990995085 @default.
- W3207231411 cites W1993631132 @default.
- W3207231411 cites W1994374969 @default.
- W3207231411 cites W1998025025 @default.
- W3207231411 cites W2001365410 @default.
- W3207231411 cites W2016900900 @default.
- W3207231411 cites W2025503735 @default.
- W3207231411 cites W2033686454 @default.
- W3207231411 cites W2042783301 @default.
- W3207231411 cites W2043362185 @default.
- W3207231411 cites W2048776980 @default.
- W3207231411 cites W2076729031 @default.
- W3207231411 cites W2097601813 @default.
- W3207231411 cites W2097904204 @default.
- W3207231411 cites W2099372171 @default.
- W3207231411 cites W2115268776 @default.
- W3207231411 cites W2117445811 @default.
- W3207231411 cites W2130695471 @default.
- W3207231411 cites W2135695572 @default.
- W3207231411 cites W2142291556 @default.
- W3207231411 cites W2148137072 @default.
- W3207231411 cites W2152059404 @default.
- W3207231411 cites W2156182980 @default.
- W3207231411 cites W2159504277 @default.
- W3207231411 cites W2165214132 @default.
- W3207231411 cites W2178680814 @default.
- W3207231411 cites W2464471684 @default.
- W3207231411 cites W2468412979 @default.
- W3207231411 cites W2468874071 @default.
- W3207231411 cites W2474848796 @default.
- W3207231411 cites W2477709421 @default.
- W3207231411 cites W2526620996 @default.
- W3207231411 cites W2614464134 @default.
- W3207231411 cites W2749069611 @default.
- W3207231411 cites W2755528757 @default.
- W3207231411 cites W2788930247 @default.
- W3207231411 cites W2808363984 @default.
- W3207231411 cites W2947802409 @default.
- W3207231411 cites W2963436583 @default.
- W3207231411 cites W2971190212 @default.
- W3207231411 cites W2996684649 @default.
- W3207231411 cites W3038735907 @default.
- W3207231411 cites W3112717819 @default.
- W3207231411 cites W3122629187 @default.
- W3207231411 cites W3135863229 @default.
- W3207231411 cites W4229950759 @default.
- W3207231411 doi "https://doi.org/10.1111/ecog.06058" @default.
- W3207231411 hasPublicationYear "2021" @default.
- W3207231411 type Work @default.
- W3207231411 sameAs 3207231411 @default.
- W3207231411 citedByCount "11" @default.
- W3207231411 countsByYear W32072314112022 @default.
- W3207231411 countsByYear W32072314112023 @default.
- W3207231411 crossrefType "journal-article" @default.
- W3207231411 hasAuthorship W3207231411A5005316379 @default.
- W3207231411 hasAuthorship W3207231411A5008708879 @default.
- W3207231411 hasAuthorship W3207231411A5020107726 @default.
- W3207231411 hasAuthorship W3207231411A5023125955 @default.
- W3207231411 hasAuthorship W3207231411A5024981545 @default.
- W3207231411 hasAuthorship W3207231411A5030865094 @default.
- W3207231411 hasAuthorship W3207231411A5037138843 @default.
- W3207231411 hasAuthorship W3207231411A5041433242 @default.
- W3207231411 hasAuthorship W3207231411A5046135844 @default.
- W3207231411 hasAuthorship W3207231411A5051331822 @default.
- W3207231411 hasAuthorship W3207231411A5062325542 @default.
- W3207231411 hasAuthorship W3207231411A5062559430 @default.
- W3207231411 hasAuthorship W3207231411A5066350746 @default.
- W3207231411 hasAuthorship W3207231411A5074521837 @default.
- W3207231411 hasAuthorship W3207231411A5077450099 @default.