Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207261777> ?p ?o ?g. }
- W3207261777 endingPage "1880" @default.
- W3207261777 startingPage "1880" @default.
- W3207261777 abstract "Systemic sclerosis (SSc) is a systemic immune-mediated disease, featuring fibrosis of the skin and organs, and has the greatest mortality among rheumatic diseases. The nervous system involvement has recently been demonstrated, although actual lung involvement is considered the leading cause of death in SSc and, therefore, should be diagnosed early. Pulmonary function tests are not sensitive enough to be used for screening purposes, thus they should be flanked by other clinical examinations; however, this would lead to a risk of overtesting, with considerable costs for the health system and an unnecessary burden for the patients. To this extent, Machine Learning (ML) algorithms could represent a useful add-on to the current clinical practice for diagnostic purposes and could help retrieve the most useful exams to be carried out for diagnostic purposes.Here, we retrospectively collected high resolution computed tomography, pulmonary function tests, esophageal pH impedance tests, esophageal manometry and reflux disease questionnaires of 38 patients with SSc, applying, with R, different supervised ML algorithms, including lasso, ridge, elastic net, classification and regression trees (CART) and random forest to estimate the most important predictors for pulmonary involvement from such data.In terms of performance, the random forest algorithm outperformed the other classifiers, with an estimated root-mean-square error (RMSE) of 0.810. However, this algorithm was seen to be computationally intensive, leaving room for the usefulness of other classifiers when a shorter response time is needed.Despite the notably small sample size, that could have prevented obtaining fully reliable data, the powerful tools available for ML can be useful for predicting early lung involvement in SSc patients. The use of predictors coming from spirometry and pH impedentiometry together might perform optimally for predicting early lung involvement in SSc." @default.
- W3207261777 created "2021-10-25" @default.
- W3207261777 creator A5024660712 @default.
- W3207261777 creator A5026825925 @default.
- W3207261777 creator A5028294961 @default.
- W3207261777 creator A5030879684 @default.
- W3207261777 creator A5039370309 @default.
- W3207261777 creator A5052016973 @default.
- W3207261777 creator A5071597978 @default.
- W3207261777 creator A5072546849 @default.
- W3207261777 creator A5080312255 @default.
- W3207261777 creator A5085973568 @default.
- W3207261777 date "2021-10-12" @default.
- W3207261777 modified "2023-10-16" @default.
- W3207261777 title "A Machine Learning Application to Predict Early Lung Involvement in Scleroderma: A Feasibility Evaluation" @default.
- W3207261777 cites W1567364560 @default.
- W3207261777 cites W1899271771 @default.
- W3207261777 cites W2006566213 @default.
- W3207261777 cites W2016976151 @default.
- W3207261777 cites W2037668591 @default.
- W3207261777 cites W2076404217 @default.
- W3207261777 cites W2099699365 @default.
- W3207261777 cites W2103403883 @default.
- W3207261777 cites W2104240047 @default.
- W3207261777 cites W2113242816 @default.
- W3207261777 cites W2122825543 @default.
- W3207261777 cites W2129813899 @default.
- W3207261777 cites W2129925362 @default.
- W3207261777 cites W2135046866 @default.
- W3207261777 cites W2136198835 @default.
- W3207261777 cites W2141928265 @default.
- W3207261777 cites W2164096595 @default.
- W3207261777 cites W2164847346 @default.
- W3207261777 cites W2188183283 @default.
- W3207261777 cites W2287209576 @default.
- W3207261777 cites W2460459357 @default.
- W3207261777 cites W2549071917 @default.
- W3207261777 cites W2605320085 @default.
- W3207261777 cites W2886522935 @default.
- W3207261777 cites W2888679364 @default.
- W3207261777 cites W2930486772 @default.
- W3207261777 cites W2931301515 @default.
- W3207261777 cites W2938026556 @default.
- W3207261777 cites W2945521814 @default.
- W3207261777 cites W2997101676 @default.
- W3207261777 cites W3007003780 @default.
- W3207261777 cites W3037077310 @default.
- W3207261777 cites W3165179450 @default.
- W3207261777 cites W3184897779 @default.
- W3207261777 cites W4211001791 @default.
- W3207261777 doi "https://doi.org/10.3390/diagnostics11101880" @default.
- W3207261777 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8534403" @default.
- W3207261777 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34679580" @default.
- W3207261777 hasPublicationYear "2021" @default.
- W3207261777 type Work @default.
- W3207261777 sameAs 3207261777 @default.
- W3207261777 citedByCount "14" @default.
- W3207261777 countsByYear W32072617772021 @default.
- W3207261777 countsByYear W32072617772022 @default.
- W3207261777 countsByYear W32072617772023 @default.
- W3207261777 crossrefType "journal-article" @default.
- W3207261777 hasAuthorship W3207261777A5024660712 @default.
- W3207261777 hasAuthorship W3207261777A5026825925 @default.
- W3207261777 hasAuthorship W3207261777A5028294961 @default.
- W3207261777 hasAuthorship W3207261777A5030879684 @default.
- W3207261777 hasAuthorship W3207261777A5039370309 @default.
- W3207261777 hasAuthorship W3207261777A5052016973 @default.
- W3207261777 hasAuthorship W3207261777A5071597978 @default.
- W3207261777 hasAuthorship W3207261777A5072546849 @default.
- W3207261777 hasAuthorship W3207261777A5080312255 @default.
- W3207261777 hasAuthorship W3207261777A5085973568 @default.
- W3207261777 hasBestOaLocation W32072617771 @default.
- W3207261777 hasConcept C11413529 @default.
- W3207261777 hasConcept C119857082 @default.
- W3207261777 hasConcept C126322002 @default.
- W3207261777 hasConcept C148483581 @default.
- W3207261777 hasConcept C154945302 @default.
- W3207261777 hasConcept C169258074 @default.
- W3207261777 hasConcept C203868755 @default.
- W3207261777 hasConcept C41008148 @default.
- W3207261777 hasConcept C71924100 @default.
- W3207261777 hasConcept C75603125 @default.
- W3207261777 hasConceptScore W3207261777C11413529 @default.
- W3207261777 hasConceptScore W3207261777C119857082 @default.
- W3207261777 hasConceptScore W3207261777C126322002 @default.
- W3207261777 hasConceptScore W3207261777C148483581 @default.
- W3207261777 hasConceptScore W3207261777C154945302 @default.
- W3207261777 hasConceptScore W3207261777C169258074 @default.
- W3207261777 hasConceptScore W3207261777C203868755 @default.
- W3207261777 hasConceptScore W3207261777C41008148 @default.
- W3207261777 hasConceptScore W3207261777C71924100 @default.
- W3207261777 hasConceptScore W3207261777C75603125 @default.
- W3207261777 hasIssue "10" @default.
- W3207261777 hasLocation W32072617771 @default.
- W3207261777 hasLocation W32072617772 @default.
- W3207261777 hasLocation W32072617773 @default.
- W3207261777 hasLocation W32072617774 @default.
- W3207261777 hasOpenAccess W3207261777 @default.