Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207268052> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3207268052 abstract "With the development of sensor and communication technologies, the use of connected devices in industrial applications has been common for a long time. Reduction of costs during this period and the definition of Internet of Things (IoTs) concept have expanded the application area of small connected devices to the level of end-users. This paved the way for IoT technology to provide a wide variety of application alternative and become a part of daily life. Therefore, a poorly protected IoT network is not sustainable and has a negative effect on not only devices but also the users of the system. In this case, protection mechanisms which use conventional intrusion detection approaches become inadequate. As the intruders’ level of expertise increases, identification and prevention of new kinds of attacks are becoming more challenging. Thus, intelligent algorithms, which are capable of learning from the natural flow of data, are necessary to overcome possible security breaches. Many studies suggesting models on individual attack types have been successful up to a point in recent literature. However, it is seen that most of the studies aiming to detect multiple attack types cannot successfully detect all of these attacks with a single model. In this study, it is aimed to suggest an all-in-one intrusion detection mechanism for detecting multiple intrusive behaviors and given network attacks. For this aim, a custom deep neural network is designed and implemented to classify a number of different types of network attacks in IoT systems with high accuracy and F1-score. As a test-bed for comparable results, one of the up-to-date dataset (CICIDS2017), which is highly imbalanced, is used and the reached results are compared with the recent literature. While the initial propose was successful for most of the classes in the dataset, it was noted that achievement was low in classes with a small number of samples. To overcome imbalanced data problem, we proposed a number of augmentation techniques and compared all the results. Experimental results showed that the proposed methods yield highest efficiency among observed literature." @default.
- W3207268052 created "2021-10-25" @default.
- W3207268052 creator A5006363669 @default.
- W3207268052 creator A5035330469 @default.
- W3207268052 creator A5074737067 @default.
- W3207268052 date "2021-10-13" @default.
- W3207268052 modified "2023-09-24" @default.
- W3207268052 title "Internet of Things (IoTs) Security: Intrusion Detection using Deep Learning" @default.
- W3207268052 cites W1576368429 @default.
- W3207268052 cites W1972757409 @default.
- W3207268052 cites W1982563504 @default.
- W3207268052 cites W1988918299 @default.
- W3207268052 cites W2031163547 @default.
- W3207268052 cites W2074548145 @default.
- W3207268052 cites W2099940443 @default.
- W3207268052 cites W2296509296 @default.
- W3207268052 cites W2344887191 @default.
- W3207268052 cites W2505525226 @default.
- W3207268052 cites W2529546255 @default.
- W3207268052 cites W2531320996 @default.
- W3207268052 cites W2531409750 @default.
- W3207268052 cites W2552899443 @default.
- W3207268052 cites W2765633793 @default.
- W3207268052 cites W2770942607 @default.
- W3207268052 cites W2803090662 @default.
- W3207268052 cites W2868264782 @default.
- W3207268052 cites W2921019731 @default.
- W3207268052 cites W2921708219 @default.
- W3207268052 cites W2938011096 @default.
- W3207268052 cites W2944643572 @default.
- W3207268052 cites W2945730492 @default.
- W3207268052 cites W2949117887 @default.
- W3207268052 cites W2950916798 @default.
- W3207268052 cites W2954395498 @default.
- W3207268052 cites W2965481252 @default.
- W3207268052 cites W2965644191 @default.
- W3207268052 cites W2975726345 @default.
- W3207268052 cites W2994866269 @default.
- W3207268052 cites W2997111441 @default.
- W3207268052 cites W3015471529 @default.
- W3207268052 cites W3022604549 @default.
- W3207268052 cites W3023398824 @default.
- W3207268052 cites W3023617420 @default.
- W3207268052 cites W3024905798 @default.
- W3207268052 cites W3034175800 @default.
- W3207268052 cites W3036197589 @default.
- W3207268052 cites W3093765340 @default.
- W3207268052 cites W3098038249 @default.
- W3207268052 doi "https://doi.org/10.13052/jwe1540-9589.2062" @default.
- W3207268052 hasPublicationYear "2021" @default.
- W3207268052 type Work @default.
- W3207268052 sameAs 3207268052 @default.
- W3207268052 citedByCount "3" @default.
- W3207268052 countsByYear W32072680522022 @default.
- W3207268052 crossrefType "journal-article" @default.
- W3207268052 hasAuthorship W3207268052A5006363669 @default.
- W3207268052 hasAuthorship W3207268052A5035330469 @default.
- W3207268052 hasAuthorship W3207268052A5074737067 @default.
- W3207268052 hasConcept C110875604 @default.
- W3207268052 hasConcept C116834253 @default.
- W3207268052 hasConcept C136197465 @default.
- W3207268052 hasConcept C136764020 @default.
- W3207268052 hasConcept C154945302 @default.
- W3207268052 hasConcept C35525427 @default.
- W3207268052 hasConcept C38652104 @default.
- W3207268052 hasConcept C41008148 @default.
- W3207268052 hasConcept C59822182 @default.
- W3207268052 hasConcept C81860439 @default.
- W3207268052 hasConcept C86803240 @default.
- W3207268052 hasConceptScore W3207268052C110875604 @default.
- W3207268052 hasConceptScore W3207268052C116834253 @default.
- W3207268052 hasConceptScore W3207268052C136197465 @default.
- W3207268052 hasConceptScore W3207268052C136764020 @default.
- W3207268052 hasConceptScore W3207268052C154945302 @default.
- W3207268052 hasConceptScore W3207268052C35525427 @default.
- W3207268052 hasConceptScore W3207268052C38652104 @default.
- W3207268052 hasConceptScore W3207268052C41008148 @default.
- W3207268052 hasConceptScore W3207268052C59822182 @default.
- W3207268052 hasConceptScore W3207268052C81860439 @default.
- W3207268052 hasConceptScore W3207268052C86803240 @default.
- W3207268052 hasLocation W32072680521 @default.
- W3207268052 hasOpenAccess W3207268052 @default.
- W3207268052 hasPrimaryLocation W32072680521 @default.
- W3207268052 hasRelatedWork W2351252967 @default.
- W3207268052 hasRelatedWork W2373866020 @default.
- W3207268052 hasRelatedWork W2388271354 @default.
- W3207268052 hasRelatedWork W2618984630 @default.
- W3207268052 hasRelatedWork W2921339519 @default.
- W3207268052 hasRelatedWork W3028453209 @default.
- W3207268052 hasRelatedWork W3161112073 @default.
- W3207268052 hasRelatedWork W4225146958 @default.
- W3207268052 hasRelatedWork W4312168023 @default.
- W3207268052 hasRelatedWork W4362496848 @default.
- W3207268052 isParatext "false" @default.
- W3207268052 isRetracted "false" @default.
- W3207268052 magId "3207268052" @default.
- W3207268052 workType "article" @default.