Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207273670> ?p ?o ?g. }
- W3207273670 endingPage "126954" @default.
- W3207273670 startingPage "126954" @default.
- W3207273670 abstract "• Smooth and irregular particles have different wetting behaviour when hydrophobic. • Sharp particle edges produce increasing apparent contact angles with drop volume. • Concave and convex liquid bridges can co-exist between hydrophobic particles. • Liquid bridges can form over micron-scale distances between hydrophobic particle. • Attraction and repulsion between particles can occur on liquid bridge formation. Hydrophobic soils, which form naturally in arid regions or after forest fires, can be problematic for land managers and engineers as they are often associated with impeded or preferential flow paths, increased surface runoff and soil erosion. However, the reduced rainwater infiltration capacity of water-repellent soils can also result in the improvement of the stability of slopes, landfills and capillary barrier cover systems, amongst others. Understanding the hydraulic conditions within these materials is critical if issues of stability and seepage are to become tractable. Traditional understanding of unsaturated hydrophobic soils suggests that convex water menisci, and so positive water pressures, should form between soil particles. However, the limited experimental results presented in the literature do not support this theory. In this work, the effect of particle shape on the formation and evolution of water meniscus structures is investigated at the macro (multiple particles) and particle scales, contrasting meniscus behaviours between spherical glass beads and angular sand grains. The spreading of a sessile drop in the macro-scale is examined and found that the angularity of the sand grains has a significant effect on the apparent contact angle of a sessile drop when deposited on a mono-layer of particles. At the particle scale, Environmental Scanning Electron Microscopy was used to investigate the formation and evolution of capillary bridges and the water retention hysteresis during two wetting and drying cycles. Again, it is shown that the shape and surface roughness of the particles are controlling factors in both the formation and evolution of liquid bridges and that stable convex and concave menisci can co-exist simultaneously between hydrophobic particle surfaces. Additionally, it was found that the hydrophobic nature of the particles allowed menisci to form across much larger separation distances than could be achieved through film coalescence between hydrophilic surfaces, with possible consequences for infiltration and imbibition modelling and, more broadly, manufacturing processes relying on hydrophobic substrates. Lastly, the hydrophobic soils qualitatively exhibited overall much less hysteresis of the water retention curve than their hydrophilic counterparts." @default.
- W3207273670 created "2021-10-25" @default.
- W3207273670 creator A5029062534 @default.
- W3207273670 creator A5030817866 @default.
- W3207273670 creator A5049606882 @default.
- W3207273670 creator A5054829244 @default.
- W3207273670 date "2021-12-01" @default.
- W3207273670 modified "2023-10-14" @default.
- W3207273670 title "Evolution of meniscus structures in hydrophobic granular systems" @default.
- W3207273670 cites W1556896027 @default.
- W3207273670 cites W1652776866 @default.
- W3207273670 cites W1816115655 @default.
- W3207273670 cites W1964141349 @default.
- W3207273670 cites W1968511731 @default.
- W3207273670 cites W1975140804 @default.
- W3207273670 cites W1975545795 @default.
- W3207273670 cites W1976172944 @default.
- W3207273670 cites W1982496329 @default.
- W3207273670 cites W1991943464 @default.
- W3207273670 cites W1999129707 @default.
- W3207273670 cites W2007128123 @default.
- W3207273670 cites W2008066937 @default.
- W3207273670 cites W2018722291 @default.
- W3207273670 cites W2018877650 @default.
- W3207273670 cites W2022713543 @default.
- W3207273670 cites W2023554999 @default.
- W3207273670 cites W2025142480 @default.
- W3207273670 cites W2026657956 @default.
- W3207273670 cites W2034194925 @default.
- W3207273670 cites W2035543413 @default.
- W3207273670 cites W2044640502 @default.
- W3207273670 cites W2049983854 @default.
- W3207273670 cites W2051779401 @default.
- W3207273670 cites W2054507546 @default.
- W3207273670 cites W2060545870 @default.
- W3207273670 cites W2065039300 @default.
- W3207273670 cites W2066765289 @default.
- W3207273670 cites W2075851848 @default.
- W3207273670 cites W2077136310 @default.
- W3207273670 cites W2079998397 @default.
- W3207273670 cites W2081356610 @default.
- W3207273670 cites W2082320977 @default.
- W3207273670 cites W2086019689 @default.
- W3207273670 cites W2086975198 @default.
- W3207273670 cites W2091358586 @default.
- W3207273670 cites W2091410512 @default.
- W3207273670 cites W2093603104 @default.
- W3207273670 cites W2096748566 @default.
- W3207273670 cites W2097843021 @default.
- W3207273670 cites W2133459304 @default.
- W3207273670 cites W2152123134 @default.
- W3207273670 cites W2161510805 @default.
- W3207273670 cites W2167277553 @default.
- W3207273670 cites W2167279371 @default.
- W3207273670 cites W2265607918 @default.
- W3207273670 cites W2317076078 @default.
- W3207273670 cites W2520861112 @default.
- W3207273670 cites W2569986889 @default.
- W3207273670 cites W2600902472 @default.
- W3207273670 cites W2694421171 @default.
- W3207273670 cites W2805000611 @default.
- W3207273670 cites W2807246023 @default.
- W3207273670 cites W2902559922 @default.
- W3207273670 cites W3015747090 @default.
- W3207273670 cites W3089092304 @default.
- W3207273670 cites W3106977352 @default.
- W3207273670 cites W3169305137 @default.
- W3207273670 cites W329779115 @default.
- W3207273670 cites W948405226 @default.
- W3207273670 doi "https://doi.org/10.1016/j.jhydrol.2021.126954" @default.
- W3207273670 hasPublicationYear "2021" @default.
- W3207273670 type Work @default.
- W3207273670 sameAs 3207273670 @default.
- W3207273670 citedByCount "4" @default.
- W3207273670 countsByYear W32072736702022 @default.
- W3207273670 countsByYear W32072736702023 @default.
- W3207273670 crossrefType "journal-article" @default.
- W3207273670 hasAuthorship W3207273670A5029062534 @default.
- W3207273670 hasAuthorship W3207273670A5030817866 @default.
- W3207273670 hasAuthorship W3207273670A5049606882 @default.
- W3207273670 hasAuthorship W3207273670A5054829244 @default.
- W3207273670 hasBestOaLocation W32072736702 @default.
- W3207273670 hasConcept C111368507 @default.
- W3207273670 hasConcept C121332964 @default.
- W3207273670 hasConcept C127313418 @default.
- W3207273670 hasConcept C134514944 @default.
- W3207273670 hasConcept C159390177 @default.
- W3207273670 hasConcept C159467904 @default.
- W3207273670 hasConcept C159750122 @default.
- W3207273670 hasConcept C159985019 @default.
- W3207273670 hasConcept C185592680 @default.
- W3207273670 hasConcept C192562407 @default.
- W3207273670 hasConcept C196806460 @default.
- W3207273670 hasConcept C2778517922 @default.
- W3207273670 hasConcept C2781345722 @default.
- W3207273670 hasConcept C41008148 @default.
- W3207273670 hasConcept C54517805 @default.
- W3207273670 hasConcept C57879066 @default.