Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207278970> ?p ?o ?g. }
- W3207278970 endingPage "327" @default.
- W3207278970 startingPage "301" @default.
- W3207278970 abstract "Technological advancements in different fields such as molecular, imaging, and other laboratory tests have led to high-dimensional statistical problems. Variable selection in high-dimensional space is a critical step to identify a parsimonious model and improve the estimation accuracy of predictive models. The penalized likelihood approach has been extensively utilized to perform simultaneous variable selection and parameter estimation for the last decades. In this chapter, we present a brief review of the penalized likelihood approaches, with emphasis on the statistical properties and implementations for different outcomes with high-dimensional covariates. We also introduce independent screening procedures in ultra-high-dimensional variable selection. We then applied these selection methods to a high-dimensional setting in patients with a time-to-event outcome. We end the chapter with a brief review of high-dimensional inference." @default.
- W3207278970 created "2021-10-25" @default.
- W3207278970 creator A5043904334 @default.
- W3207278970 creator A5046596545 @default.
- W3207278970 creator A5068387334 @default.
- W3207278970 date "2021-01-01" @default.
- W3207278970 modified "2023-09-26" @default.
- W3207278970 title "Variable Selection Approaches in High-Dimensional Space" @default.
- W3207278970 cites W1706602022 @default.
- W3207278970 cites W1965125844 @default.
- W3207278970 cites W1976706787 @default.
- W3207278970 cites W1982652137 @default.
- W3207278970 cites W1985048518 @default.
- W3207278970 cites W1989453064 @default.
- W3207278970 cites W1996583386 @default.
- W3207278970 cites W2014360396 @default.
- W3207278970 cites W2016119924 @default.
- W3207278970 cites W2020925091 @default.
- W3207278970 cites W2049701820 @default.
- W3207278970 cites W2056636001 @default.
- W3207278970 cites W2058240339 @default.
- W3207278970 cites W2058815839 @default.
- W3207278970 cites W2069119359 @default.
- W3207278970 cites W2074682976 @default.
- W3207278970 cites W2075490785 @default.
- W3207278970 cites W2079775628 @default.
- W3207278970 cites W2082213488 @default.
- W3207278970 cites W2106161928 @default.
- W3207278970 cites W2116581043 @default.
- W3207278970 cites W2122825543 @default.
- W3207278970 cites W2129554161 @default.
- W3207278970 cites W2133593515 @default.
- W3207278970 cites W2135046866 @default.
- W3207278970 cites W2141613549 @default.
- W3207278970 cites W2148487094 @default.
- W3207278970 cites W2149199519 @default.
- W3207278970 cites W2154560360 @default.
- W3207278970 cites W2157076315 @default.
- W3207278970 cites W2158497151 @default.
- W3207278970 cites W2159771669 @default.
- W3207278970 cites W2165088640 @default.
- W3207278970 cites W2168175751 @default.
- W3207278970 cites W2204774351 @default.
- W3207278970 cites W2515548543 @default.
- W3207278970 cites W2562162676 @default.
- W3207278970 cites W2788036298 @default.
- W3207278970 cites W2892633614 @default.
- W3207278970 cites W2911964244 @default.
- W3207278970 cites W2963705952 @default.
- W3207278970 cites W2964331163 @default.
- W3207278970 cites W2966650337 @default.
- W3207278970 cites W3098635105 @default.
- W3207278970 cites W3099470970 @default.
- W3207278970 cites W3099550161 @default.
- W3207278970 cites W3103643510 @default.
- W3207278970 cites W3106108064 @default.
- W3207278970 cites W4234698323 @default.
- W3207278970 cites W4294541781 @default.
- W3207278970 doi "https://doi.org/10.1007/978-3-030-72437-5_14" @default.
- W3207278970 hasPublicationYear "2021" @default.
- W3207278970 type Work @default.
- W3207278970 sameAs 3207278970 @default.
- W3207278970 citedByCount "1" @default.
- W3207278970 countsByYear W32072789702022 @default.
- W3207278970 crossrefType "book-chapter" @default.
- W3207278970 hasAuthorship W3207278970A5043904334 @default.
- W3207278970 hasAuthorship W3207278970A5046596545 @default.
- W3207278970 hasAuthorship W3207278970A5068387334 @default.
- W3207278970 hasConcept C105795698 @default.
- W3207278970 hasConcept C119043178 @default.
- W3207278970 hasConcept C119857082 @default.
- W3207278970 hasConcept C124101348 @default.
- W3207278970 hasConcept C134261354 @default.
- W3207278970 hasConcept C134306372 @default.
- W3207278970 hasConcept C144237770 @default.
- W3207278970 hasConcept C148220186 @default.
- W3207278970 hasConcept C148483581 @default.
- W3207278970 hasConcept C154945302 @default.
- W3207278970 hasConcept C182365436 @default.
- W3207278970 hasConcept C184509293 @default.
- W3207278970 hasConcept C2776214188 @default.
- W3207278970 hasConcept C3019722297 @default.
- W3207278970 hasConcept C33923547 @default.
- W3207278970 hasConcept C41008148 @default.
- W3207278970 hasConcept C73555534 @default.
- W3207278970 hasConcept C81917197 @default.
- W3207278970 hasConcept C93959086 @default.
- W3207278970 hasConceptScore W3207278970C105795698 @default.
- W3207278970 hasConceptScore W3207278970C119043178 @default.
- W3207278970 hasConceptScore W3207278970C119857082 @default.
- W3207278970 hasConceptScore W3207278970C124101348 @default.
- W3207278970 hasConceptScore W3207278970C134261354 @default.
- W3207278970 hasConceptScore W3207278970C134306372 @default.
- W3207278970 hasConceptScore W3207278970C144237770 @default.
- W3207278970 hasConceptScore W3207278970C148220186 @default.
- W3207278970 hasConceptScore W3207278970C148483581 @default.
- W3207278970 hasConceptScore W3207278970C154945302 @default.
- W3207278970 hasConceptScore W3207278970C182365436 @default.