Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207308093> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3207308093 abstract "Abstract This study has double objectives: investigation of the main recovery mechanisms affecting the performance of the gas huff-n-puff (GHnP) process in a shale oil reservoir, and application of optimization techniques to modelling of the cyclic gas injection. A dual-permeability reservoir simulation model has been built to reproduce the performance of a single hydraulic fracture. The hydraulic fracture has the average geometry and properties of the well under analysis. A history match workflow has been run to obtain a simulation model fully representative of the studied well. An optimization workflow has been run to maximize the cumulative oil obtained during the GHnP process. The operational variables optimized are: duration of gas injection, soaking, and production, onset time of GHnP, injection gas flow rate, and number of cycles. This optimization workflow is launched twice using two different compositions for the injection gas: rich gas and pure methane. Additionally, the optimum case obtained previously with rich gas is simulated with a higher minimum bottom hole pressure (BHP) for both primary production and GHnP process. Moreover, some properties that could potentially explain the different recovery mechanisms were tracked and analyzed. Three different porosity systems have been considered in the model: fractures, matrix in the stimulated reservoir volume (SRV), and matrix in the non-SRV zone (virgin matrix). Each one with a different pressure profile, and thus with its corresponding recovery mechanisms, identified as below: Vaporization/Condensation (two-phase system) in the fractures.Miscibility (liquid single-phase) in the non-SRV matrix.Miscibility and/or Vaporization/Condensation in the SRV matrix: depending on the injection gas composition and the pressure profile along the SRV the mechanism may be clearly one of them or even both. Results of this simulation study suggest that for the optimized cases, incremental oil recovery is 24% when the gas injected is a rich gas, but it is only 2.4% when the gas injected is pure methane. A higher incremental oil recovery of 49% is obtained, when injecting rich gas and increasing the minimum BHP of the puff cycle above the saturation pressure. Injection of gas results in reduction of oil molecular weight, oil density and oil viscosity in the matrix, i.e., the oil gets lighter. This net decrease is more pronounced in the SRV than in the non-SRV region. The incremental oil recovery observed in the GHnP process is due to the mobilization of heavy components (not present in the injection gas composition) that otherwise would remain inside the reservoir. Due to the main characteristic of the shale reservoirs (nano-Darcy permeability), GHnP is not a displacement process. A key factor in success of the GHnP process is to improve the contact of the injected gas and the reservoir oil to increase the mixing and mass transfer. This study includes a review of different mechanisms, and specifically tracks the evolution of the properties that explain and justify the different identified mechanisms." @default.
- W3207308093 created "2021-10-25" @default.
- W3207308093 creator A5011508745 @default.
- W3207308093 creator A5025138532 @default.
- W3207308093 creator A5039863697 @default.
- W3207308093 creator A5061425057 @default.
- W3207308093 creator A5070332602 @default.
- W3207308093 creator A5090283088 @default.
- W3207308093 date "2021-10-18" @default.
- W3207308093 modified "2023-09-27" @default.
- W3207308093 title "An In-Depth Review of the Recovery Mechanisms for the Cyclic Gas Injection Process in Shale Oil Reservoirs" @default.
- W3207308093 cites W2586993611 @default.
- W3207308093 cites W2791919527 @default.
- W3207308093 cites W2885711552 @default.
- W3207308093 cites W2886068897 @default.
- W3207308093 cites W2895781548 @default.
- W3207308093 cites W2939200756 @default.
- W3207308093 cites W2968618123 @default.
- W3207308093 cites W2973485967 @default.
- W3207308093 cites W3041247690 @default.
- W3207308093 doi "https://doi.org/10.2118/205194-ms" @default.
- W3207308093 hasPublicationYear "2021" @default.
- W3207308093 type Work @default.
- W3207308093 sameAs 3207308093 @default.
- W3207308093 citedByCount "0" @default.
- W3207308093 crossrefType "proceedings-article" @default.
- W3207308093 hasAuthorship W3207308093A5011508745 @default.
- W3207308093 hasAuthorship W3207308093A5025138532 @default.
- W3207308093 hasAuthorship W3207308093A5039863697 @default.
- W3207308093 hasAuthorship W3207308093A5061425057 @default.
- W3207308093 hasAuthorship W3207308093A5070332602 @default.
- W3207308093 hasAuthorship W3207308093A5090283088 @default.
- W3207308093 hasConcept C120882062 @default.
- W3207308093 hasConcept C121332964 @default.
- W3207308093 hasConcept C127313418 @default.
- W3207308093 hasConcept C151730666 @default.
- W3207308093 hasConcept C153127940 @default.
- W3207308093 hasConcept C178790620 @default.
- W3207308093 hasConcept C185592680 @default.
- W3207308093 hasConcept C187320778 @default.
- W3207308093 hasConcept C192562407 @default.
- W3207308093 hasConcept C195801359 @default.
- W3207308093 hasConcept C200093464 @default.
- W3207308093 hasConcept C2779096232 @default.
- W3207308093 hasConcept C2993020645 @default.
- W3207308093 hasConcept C39432304 @default.
- W3207308093 hasConcept C41625074 @default.
- W3207308093 hasConcept C516920438 @default.
- W3207308093 hasConcept C55493867 @default.
- W3207308093 hasConcept C6648577 @default.
- W3207308093 hasConcept C78762247 @default.
- W3207308093 hasConcept C97355855 @default.
- W3207308093 hasConceptScore W3207308093C120882062 @default.
- W3207308093 hasConceptScore W3207308093C121332964 @default.
- W3207308093 hasConceptScore W3207308093C127313418 @default.
- W3207308093 hasConceptScore W3207308093C151730666 @default.
- W3207308093 hasConceptScore W3207308093C153127940 @default.
- W3207308093 hasConceptScore W3207308093C178790620 @default.
- W3207308093 hasConceptScore W3207308093C185592680 @default.
- W3207308093 hasConceptScore W3207308093C187320778 @default.
- W3207308093 hasConceptScore W3207308093C192562407 @default.
- W3207308093 hasConceptScore W3207308093C195801359 @default.
- W3207308093 hasConceptScore W3207308093C200093464 @default.
- W3207308093 hasConceptScore W3207308093C2779096232 @default.
- W3207308093 hasConceptScore W3207308093C2993020645 @default.
- W3207308093 hasConceptScore W3207308093C39432304 @default.
- W3207308093 hasConceptScore W3207308093C41625074 @default.
- W3207308093 hasConceptScore W3207308093C516920438 @default.
- W3207308093 hasConceptScore W3207308093C55493867 @default.
- W3207308093 hasConceptScore W3207308093C6648577 @default.
- W3207308093 hasConceptScore W3207308093C78762247 @default.
- W3207308093 hasConceptScore W3207308093C97355855 @default.
- W3207308093 hasLocation W32073080931 @default.
- W3207308093 hasOpenAccess W3207308093 @default.
- W3207308093 hasPrimaryLocation W32073080931 @default.
- W3207308093 hasRelatedWork W1541957006 @default.
- W3207308093 hasRelatedWork W2286534760 @default.
- W3207308093 hasRelatedWork W2386959496 @default.
- W3207308093 hasRelatedWork W2795407905 @default.
- W3207308093 hasRelatedWork W2807263755 @default.
- W3207308093 hasRelatedWork W2921033291 @default.
- W3207308093 hasRelatedWork W3007888165 @default.
- W3207308093 hasRelatedWork W3120763552 @default.
- W3207308093 hasRelatedWork W657477992 @default.
- W3207308093 hasRelatedWork W1968760323 @default.
- W3207308093 isParatext "false" @default.
- W3207308093 isRetracted "false" @default.
- W3207308093 magId "3207308093" @default.
- W3207308093 workType "article" @default.