Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207360720> ?p ?o ?g. }
- W3207360720 endingPage "750" @default.
- W3207360720 startingPage "735" @default.
- W3207360720 abstract "Summary Lag windows are commonly used in time series analysis, econometrics, steady-state simulation and Markov chain Monte Carlo to estimate time-average covariance matrices. In the presence of positive correlation in the underlying process, estimators of this matrix almost always exhibit significant negative bias, leading to undesirable finite-sample properties. We propose a new family of lag windows specifically designed to improve finite-sample performance by offsetting this negative bias. Any existing lag window can be adapted into a lugsail equivalent with no additional assumptions. We use these lag windows in spectral variance estimators and demonstrate their advantages in a linear regression model with autocorrelated and heteroskedastic residuals. We further employ the lugsail lag windows in weighted batch means estimators because of their computational efficiency on large simulation output. We obtain bias and variance results for these multivariate estimators and significantly weaken the mixing condition on the process. Superior finite-sample properties are demonstrated in a vector autoregressive process and a Bayesian logistic regression model." @default.
- W3207360720 created "2021-10-25" @default.
- W3207360720 creator A5075706077 @default.
- W3207360720 creator A5083571144 @default.
- W3207360720 date "2021-10-13" @default.
- W3207360720 modified "2023-09-26" @default.
- W3207360720 title "Lugsail lag windows for estimating time-average covariance matrices" @default.
- W3207360720 cites W1491591007 @default.
- W3207360720 cites W1570069945 @default.
- W3207360720 cites W1970956379 @default.
- W3207360720 cites W1975639348 @default.
- W3207360720 cites W1994514412 @default.
- W3207360720 cites W2000466943 @default.
- W3207360720 cites W2015406517 @default.
- W3207360720 cites W2019087052 @default.
- W3207360720 cites W2031051057 @default.
- W3207360720 cites W2035731005 @default.
- W3207360720 cites W2049705023 @default.
- W3207360720 cites W2062831541 @default.
- W3207360720 cites W2063891855 @default.
- W3207360720 cites W2066012390 @default.
- W3207360720 cites W2080982314 @default.
- W3207360720 cites W2088890591 @default.
- W3207360720 cites W2106606323 @default.
- W3207360720 cites W2108446661 @default.
- W3207360720 cites W2108818539 @default.
- W3207360720 cites W2117178635 @default.
- W3207360720 cites W2119035500 @default.
- W3207360720 cites W2127855947 @default.
- W3207360720 cites W2138011412 @default.
- W3207360720 cites W2151583757 @default.
- W3207360720 cites W2169791062 @default.
- W3207360720 cites W2170610685 @default.
- W3207360720 cites W2279247045 @default.
- W3207360720 cites W2320078877 @default.
- W3207360720 cites W2399619874 @default.
- W3207360720 cites W2409813760 @default.
- W3207360720 cites W2621576843 @default.
- W3207360720 cites W2656638979 @default.
- W3207360720 cites W2804712735 @default.
- W3207360720 cites W2962777160 @default.
- W3207360720 cites W2963133138 @default.
- W3207360720 cites W2963366756 @default.
- W3207360720 cites W3121994487 @default.
- W3207360720 cites W3125876493 @default.
- W3207360720 cites W4206469534 @default.
- W3207360720 cites W4231271795 @default.
- W3207360720 doi "https://doi.org/10.1093/biomet/asab049" @default.
- W3207360720 hasPublicationYear "2021" @default.
- W3207360720 type Work @default.
- W3207360720 sameAs 3207360720 @default.
- W3207360720 citedByCount "2" @default.
- W3207360720 countsByYear W32073607202022 @default.
- W3207360720 crossrefType "journal-article" @default.
- W3207360720 hasAuthorship W3207360720A5075706077 @default.
- W3207360720 hasAuthorship W3207360720A5083571144 @default.
- W3207360720 hasBestOaLocation W32073607202 @default.
- W3207360720 hasConcept C101104100 @default.
- W3207360720 hasConcept C105795698 @default.
- W3207360720 hasConcept C111350023 @default.
- W3207360720 hasConcept C149782125 @default.
- W3207360720 hasConcept C151406439 @default.
- W3207360720 hasConcept C159877910 @default.
- W3207360720 hasConcept C178650346 @default.
- W3207360720 hasConcept C185429906 @default.
- W3207360720 hasConcept C194657046 @default.
- W3207360720 hasConcept C19499675 @default.
- W3207360720 hasConcept C24338571 @default.
- W3207360720 hasConcept C31258907 @default.
- W3207360720 hasConcept C33923547 @default.
- W3207360720 hasConcept C41008148 @default.
- W3207360720 hasConcept C5297727 @default.
- W3207360720 hasConcept C75778745 @default.
- W3207360720 hasConcept C97379794 @default.
- W3207360720 hasConceptScore W3207360720C101104100 @default.
- W3207360720 hasConceptScore W3207360720C105795698 @default.
- W3207360720 hasConceptScore W3207360720C111350023 @default.
- W3207360720 hasConceptScore W3207360720C149782125 @default.
- W3207360720 hasConceptScore W3207360720C151406439 @default.
- W3207360720 hasConceptScore W3207360720C159877910 @default.
- W3207360720 hasConceptScore W3207360720C178650346 @default.
- W3207360720 hasConceptScore W3207360720C185429906 @default.
- W3207360720 hasConceptScore W3207360720C194657046 @default.
- W3207360720 hasConceptScore W3207360720C19499675 @default.
- W3207360720 hasConceptScore W3207360720C24338571 @default.
- W3207360720 hasConceptScore W3207360720C31258907 @default.
- W3207360720 hasConceptScore W3207360720C33923547 @default.
- W3207360720 hasConceptScore W3207360720C41008148 @default.
- W3207360720 hasConceptScore W3207360720C5297727 @default.
- W3207360720 hasConceptScore W3207360720C75778745 @default.
- W3207360720 hasConceptScore W3207360720C97379794 @default.
- W3207360720 hasIssue "3" @default.
- W3207360720 hasLocation W32073607201 @default.
- W3207360720 hasLocation W32073607202 @default.
- W3207360720 hasOpenAccess W3207360720 @default.
- W3207360720 hasPrimaryLocation W32073607201 @default.
- W3207360720 hasRelatedWork W2120633375 @default.
- W3207360720 hasRelatedWork W2266545005 @default.