Matches in SemOpenAlex for { <https://semopenalex.org/work/W3207377464> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3207377464 endingPage "586" @default.
- W3207377464 startingPage "575" @default.
- W3207377464 abstract "Recently, deep learning has achieved promising results in the calculation of Estimated Time of Arrival (ETA), which is considered as predicting the travel time from the start point to a certain place along a given path. ETA plays an essential role in intelligent taxi services or automotive navigation systems. A common practice is to use embedding vectors to represent the elements of a road network, such as road segments and crossroads. Road elements have their own attributes like length, presence of crosswalks, lanes number, etc. However, many links in the road network are traversed by too few floating cars even in large ride-hailing platforms and affected by the wide range of temporal events. As the primary goal of the research, we explore the generalization ability of different spatial embedding strategies and propose a two-stage approach to deal with such problems." @default.
- W3207377464 created "2021-10-25" @default.
- W3207377464 creator A5002782799 @default.
- W3207377464 creator A5008237271 @default.
- W3207377464 creator A5024779782 @default.
- W3207377464 date "2022-01-01" @default.
- W3207377464 modified "2023-09-26" @default.
- W3207377464 title "Hybrid Graph Embedding Techniques in Estimated Time of Arrival Task" @default.
- W3207377464 cites W2144475703 @default.
- W3207377464 cites W2145028572 @default.
- W3207377464 cites W2295418620 @default.
- W3207377464 cites W2749954505 @default.
- W3207377464 cites W2788997482 @default.
- W3207377464 cites W2794610077 @default.
- W3207377464 cites W2808980192 @default.
- W3207377464 cites W2809128166 @default.
- W3207377464 cites W2809623940 @default.
- W3207377464 cites W2903871660 @default.
- W3207377464 cites W2953692256 @default.
- W3207377464 cites W2996847713 @default.
- W3207377464 cites W3080911033 @default.
- W3207377464 cites W3104097132 @default.
- W3207377464 cites W3129219683 @default.
- W3207377464 cites W3152893301 @default.
- W3207377464 doi "https://doi.org/10.1007/978-3-030-93413-2_48" @default.
- W3207377464 hasPublicationYear "2022" @default.
- W3207377464 type Work @default.
- W3207377464 sameAs 3207377464 @default.
- W3207377464 citedByCount "1" @default.
- W3207377464 countsByYear W32073774642023 @default.
- W3207377464 crossrefType "book-chapter" @default.
- W3207377464 hasAuthorship W3207377464A5002782799 @default.
- W3207377464 hasAuthorship W3207377464A5008237271 @default.
- W3207377464 hasAuthorship W3207377464A5024779782 @default.
- W3207377464 hasBestOaLocation W32073774642 @default.
- W3207377464 hasConcept C127413603 @default.
- W3207377464 hasConcept C132525143 @default.
- W3207377464 hasConcept C134306372 @default.
- W3207377464 hasConcept C146978453 @default.
- W3207377464 hasConcept C154945302 @default.
- W3207377464 hasConcept C177148314 @default.
- W3207377464 hasConcept C201995342 @default.
- W3207377464 hasConcept C204323151 @default.
- W3207377464 hasConcept C22212356 @default.
- W3207377464 hasConcept C2524010 @default.
- W3207377464 hasConcept C2780451532 @default.
- W3207377464 hasConcept C28719098 @default.
- W3207377464 hasConcept C2985733770 @default.
- W3207377464 hasConcept C3017552255 @default.
- W3207377464 hasConcept C33923547 @default.
- W3207377464 hasConcept C41008148 @default.
- W3207377464 hasConcept C41608201 @default.
- W3207377464 hasConcept C79403827 @default.
- W3207377464 hasConcept C80444323 @default.
- W3207377464 hasConceptScore W3207377464C127413603 @default.
- W3207377464 hasConceptScore W3207377464C132525143 @default.
- W3207377464 hasConceptScore W3207377464C134306372 @default.
- W3207377464 hasConceptScore W3207377464C146978453 @default.
- W3207377464 hasConceptScore W3207377464C154945302 @default.
- W3207377464 hasConceptScore W3207377464C177148314 @default.
- W3207377464 hasConceptScore W3207377464C201995342 @default.
- W3207377464 hasConceptScore W3207377464C204323151 @default.
- W3207377464 hasConceptScore W3207377464C22212356 @default.
- W3207377464 hasConceptScore W3207377464C2524010 @default.
- W3207377464 hasConceptScore W3207377464C2780451532 @default.
- W3207377464 hasConceptScore W3207377464C28719098 @default.
- W3207377464 hasConceptScore W3207377464C2985733770 @default.
- W3207377464 hasConceptScore W3207377464C3017552255 @default.
- W3207377464 hasConceptScore W3207377464C33923547 @default.
- W3207377464 hasConceptScore W3207377464C41008148 @default.
- W3207377464 hasConceptScore W3207377464C41608201 @default.
- W3207377464 hasConceptScore W3207377464C79403827 @default.
- W3207377464 hasConceptScore W3207377464C80444323 @default.
- W3207377464 hasLocation W32073774641 @default.
- W3207377464 hasLocation W32073774642 @default.
- W3207377464 hasOpenAccess W3207377464 @default.
- W3207377464 hasPrimaryLocation W32073774641 @default.
- W3207377464 hasRelatedWork W1569044692 @default.
- W3207377464 hasRelatedWork W2014046727 @default.
- W3207377464 hasRelatedWork W2018919777 @default.
- W3207377464 hasRelatedWork W2314116683 @default.
- W3207377464 hasRelatedWork W2390190242 @default.
- W3207377464 hasRelatedWork W2542629150 @default.
- W3207377464 hasRelatedWork W2784128073 @default.
- W3207377464 hasRelatedWork W2977307733 @default.
- W3207377464 hasRelatedWork W3216563003 @default.
- W3207377464 hasRelatedWork W4288333141 @default.
- W3207377464 isParatext "false" @default.
- W3207377464 isRetracted "false" @default.
- W3207377464 magId "3207377464" @default.
- W3207377464 workType "book-chapter" @default.